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UNIT-1 

Pre - requisite:  

 Basic knowledge of Digital System Design. 

 To Study the Architecture of 8085 and interrupts 

Outcomes 

 Analyze the basic concepts of microprocessor and instructions set 

  

INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER 

A microprocessor is a programmable electronics chip that has computing and decision making 

capabilities similar to central processing unit of a computer. Any microprocessor based systems having 

limited number of resources are called microcomputers. Nowadays, microprocessor can be seen in almost 

all types of electronics devices like mobile phones, printers, washing machines etc. Microprocessors are 

also used in advanced applications like radars, satellites and flights. Due to the rapid advancements in 

electronic industry and large scale integration of devices results in a significant cost reduction and 

increase application of microprocessors and their derivatives. 

Microprocessor-based system 

 

Bit: A bit is a single binary digit. 

Word: A word refers to the basic data size or bit size that can be processed by the arithmetic and logic 

unit of the processor. A 16-bit binary number is called a word in a 16-bit processor. 

Bus: A bus is a group of wires/lines that carry similar information. 

System Bus: The system bus is a group of wires/lines used for communication between the 

microprocessor and peripherals. 

Memory Word: The number of bits that can be stored in a register or memory element is called a memory 

word. 

Address Bus: It carries the address, which is a unique binary pattern used to identify a memory location or 

an I/O port. For example, an eight bit address bus has eight lines and thus it can address 28 = 256 

different locations. The locations in hexadecimal format can be written as 00H FFH. 



Data Bus: The data bus is used to transfer data between memory and processor or between I/O device and 

processor. For example, an 8-bit processor will generally have an 8-bit data bus and a 16-bit processor 

will have 16-bit data bus. 

Control Bus: The control bus carry control signals, which consists of signals for selection of memory or 

I/O device from the given address, direction of data transfer and synchronization of data transfer in case 

of slow devices. 

A typical microprocessor consists of arithmetic and logic unit (ALU) in association with control unit to 

process the instruction execution. Almost all the microprocessors are based on the principle of store-

program concept. In store-program concept, programs or instructions are sequentially stored in the 

memory locations that are to be executed. To do any task using a microprocessor, it is to be programmed 

by the user. So the programmer must have idea about its internal resources, features and supported 

instructions. Each microprocessor has a set of instructions, a list which is provided by the microprocessor 

manufacturer. The instruction set of a microprocessor is provided in two forms: binary machine code and 

mnemonics. 

Microprocessor communicates and operates in binary numbers 0 and 1. The set of instructions in the form 

of binary patterns is called a machine language and it is difficult for us to understand. Therefore, the 

binary patterns are given abbreviated names, called mnemonics, which forms the assembly language. The 

conversion of assembly-level language into binary machine-level language is done by using an 

application called assembler. 

Technology Used: 

 The semiconductor manufacturing technologies used for chips are: 

 Transistor-Transistor Logic (TTL) 

 Emitter Coupled Logic (ECL) 

 Complementary Metal-Oxide Semiconductor (CMOS) 

Classification of Microprocessors: 

Based on their specification, application and architecture microprocessors are classified. 

Based on size of data bus: 

 4-bit microprocessor 

 8-bit microprocessor 

 16-bit microprocessor 

 32-bit microprocessor 

Based on application: 

 

 General-purpose microprocessor- used in general computer system and can be used by 

programmer for any application. Examples, 8085 to Intel Pentium. 

 Microcontroller- microprocessor with built-in memory and ports and can be programmed for any 

generic control application. Example, 8051. 

 Special-purpose processors- designed to handle special functions required for an application. 

Examples, digital signal processors and application-specific integrated circuit (ASIC) chips. 

 

 



Based on architecture: 

 

 Reduced Instruction Set Computer (RISC) processors 

 Complex Instruction Set Computer (CISC) processors 

 

8085 MICROPROCESSOR ARCHITECTURE 

 

The 8085 microprocessor is an 8-bit processor available as a 40-pin IC package and uses +5 V for power. 

It can run at a maximum frequency of 3 MHz. Its data bus width is 8-bit and address bus width is 16-bit, 

thus it can address 216 = 64 KB of memory. The internal architecture of 8085. 

 

 

 
Arithmetic and Logic Unit 

 

The ALU performs the actual numerical and logical operations such as Addition (ADD), Subtraction 

(SUB), AND, OR etc. It uses data from memory and from Accumulator to perform operations. The results 

of the arithmetic and logical operations are stored in the accumulator. 

 

Registers 

 

The 8085 includes six registers, one accumulator and one flag register,  In addition, it has two 16-bit 

registers: stack pointer and program counter. The 8085 has six general-purpose registers to store 8-bit 

data; these are identified as B, C, D, E, H and L. they can be combined as register pairs - BC, DE and HL 

to perform some 16-bit operations. The programmer can use these registers to store or copy data into the 

register by using data copy instructions. 

 

 



Accumulator 

 

The accumulator is an 8-bit register that is a part of ALU. This register is used to store 8-bit data and to 

perform arithmetic and logical operations. The result of an operation is stored in the accumulator. The 

accumulator is also identified as register A. 

 

 
 

Flag register 

 

The ALU includes five flip-flops, which are set or reset after an operation according to data condition of 

the result in the accumulator and other registers. They are called Zero (Z), Carry (CY), Sign (S), Parity (P) 

and Auxiliary Carry (AC) flags.The microprocessor uses these flags to test data conditions. 

 

 
 

For example, after an addition of two numbers, if the result in the accumulator is larger than 8-bit, the 

flip-flop uses to indicate a carry by setting CY flag to 1. When an arithmetic operation results in zero, Z 

flag is set to 1. The S flag is just a copy of the bit D7 of the accumulator. A negative number has a 1 in bit 

D7 and a positive number has a 0 in 2’s complement representation. The AC flag is set to 1, when a carry 

result from bit D3 and passes to bit D4. The P flag is set to 1, when the result in accumulator contains 

even number of 1s. 

 

Program Counter (PC) 

 

This 16-bit register deals with sequencing the execution of instructions. This register is a memory pointer. 

The microprocessor uses this register to sequence the execution of the instructions. The function of the 

program counter is to point to the memory address from which the next byte is to be fetched. When a byte 

is being fetched, the program counter is automatically incremented by one to point to the next memory 

location. 

 

 

 



Stack Pointer (SP) 

 

The stack pointer is also a 16-bit register, used as a memory pointer. It points to a memory location in 

R/W memory, called stack. The beginning of the stack is defined by loading 16- bit address in the stack 

pointer. 

 

Instruction Register/Decoder 

 

It is an 8-bit register that temporarily stores the current instruction of a program. Latest instruction sent 

here from memory prior to execution. Decoder then takes instruction and decodes or interprets the 

instruction. Decoded instruction then passed to next stage. 

 

Control Unit 

 

Generates signals on data bus, address bus and control bus within microprocessor to carry out the 

instruction, which has been decoded. Typical buses and their timing are described as follows: 

 

Data Bus: Data bus carries data in binary form between microprocessor and other external units such as 

memory. It is used to transmit data i.e. information, results of arithmetic etc between memory and the 

microprocessor. Data bus is bidirectional in nature. The data bus width of 8085 microprocessor is 8-bit 

i.e. 28 combination of binary digits and are typically identified as D0 D7. Thus size of the data bus 

determines what arithmetic can be done. If only 8-bit wide then largest number is 11111111 (255 in 

decimal). Therefore, larger numbers have to be broken down into chunks of 255. This slows 

microprocessor. 

 

Address Bus: The address bus carries addresses and is one way bus from microprocessor to the memory 

or other devices. 8085 microprocessor contain 16-bit address bus and are generally identified as A0 - 

A15. The higher order address lines (A8 A15) are unidirectional and the lower order lines (A0 A7) are 

multiplexed (time-shared) with the eight data bits (D0 D7) and hence, they are bidirectional. 

 

Control Bus: Control bus are various lines which have specific functions for coordinating and controlling 

microprocessor operations. The control bus carries control signals partly unidirectional and partly 

bidirectional. The following control and status signals are used by 8085 processor: 

 

 ALE (output): Address Latch Enable is a pulse that is provided when an address appears on the 

AD0 AD7 lines, after which it becomes 0. 

 RD (active low output): The Read signal indicates that data are being read from the selected I/O 

or memory device and that they are available on the data bus. 

 WR (active low output): The Write signal indicates that data on the data bus are to be written into 

a selected memory or I/O location. 

 IO/M(output): It is a signal that distinguished between a memory operation and an I/O operation. 

When IO/M= 0 it is a memory operation and IO/M= 1 it is an I/O operation.  

 S1 and S0 (output): These are status signals used to specify the type of operation being performed 



 
The  microprocessor performs primarily four operations: 

 

I. Memory Read: Reads data (or instruction) from memory. 

II. Memory Write: Writes data (or instruction) into memory. 

III. I/O Read: Accepts data from input device. 

IV. I/O Write: Sends data to output device. 

 

8085 PIN DESCRIPTION 

 

 It is a 8-bit microprocessor 

 Manufactured with N-MOS technology 

 40 pin IC package 

 It has 16-bit address bus and thus has 216 = 64 KB addressing capability. 

 Operate with 3 MHz single-phase clock 

 +5 V single power supply 

 

The logic pin layout and signal groups of the 8085nmicroprocessor are shown in Fig. 6. All 

the signals are classified into six groups: 

 

 Address bus 

 Data bus 

 Control & status signals 

 Power supply and frequency signals 

 Externally initiated signals 

 Serial I/O signals 

 



 
Address and Data Buses: 

 

A8 A15 (output, 3-state): Most significant eight bits of memory addresses and the eight bits of the I/O 

addresses. These lines enter into tri-state high impedance state during HOLD and HALT modes. 

 

AD0 AD7 (input/output, 3-state): Lower significant bits of memory addresses and the eight bits of the I/O 

addresses during first clock cycle. Behaves as data bus during third and fourth clock cycle. These lines enter 

into tri-state high impedance state during HOLD and HALT modes. 

 

Control & Status Signals: 

 

 ALE: Address latch enable 

 RD : Read control signal. 

 WR : Write control signal. 

 IO/M, S1 and S0 : Status signals. 

 

Power Supply & Clock Frequency: 

 

 Vcc: +5 V power supply 

 Vss: Ground reference 

 X1, X2: A crystal having frequency of 6 MHz is connected at these two pins 

 CLK: Clock output 

 

Externally Initiated and Interrupt Signals: 

 

 RESET IN: When the signal on this pin is low, the PC is set to 0, the buses are tristated and the 

processor is reset. 



 RESET OUT: This signal indicates that the processor is being reset. The signal can be used to reset 

other devices. 

 READY: When this signal is low, the processor waits for an integral number of clock cycles until 

it goes high. 

 HOLD: This signal indicates that a peripheral like DMA (direct memory access) controller is 

requesting the use of address and data bus. 

 HLDA: This signal acknowledges the HOLD request. 

 INTR: Interrupt request is a general-purpose interrupt. 

 INTA : This is used to acknowledge an interrupt. 

 RST 7.5, RST 6.5, RST 5,5 restart interrupt: These are vectored interrupts and 

have highest priority than INTR interrupt. 

 TRAP: This is a non-maskable interrupt and has the highest priority. 

 

Serial I/O Signals: 

 

 SID: Serial input signal. Bit on this line is loaded to D7 bit of register A using RIM 

 instruction. 

 SOD: Serial output signal. Output SOD is set or reset by using SIM instruction. 

 

Addressing Modes in Instructions: 

 

The process of specifying the data to be operated on by the instruction is called addressing. 

The various formats for specifying operands are called addressing modes. The 8085 has the 

following five types of addressing: 

 

 Immediate addressing 

 Memory direct addressing 

 Register direct addressing 

 Indirect addressing 

 Implicit addressing 

 

Immediate Addressing: 

 

In this mode, the operand given in the instruction - a byte or word transfers to the 

destination register or memory location. 

 

Ex: MVI A, 9AH 

The operand is a part of the instruction. 

The operand is stored in the register mentioned in the instruction. 

 

Memory Direct Addressing: 

 

Memory direct addressing moves a byte or word between a memory location and register. 

The memory location address is given in the instruction. 

 

Ex: LDA 850FH 

This instruction is used to load the content of memory address 850FH in the accumulator. 

 

 

 



Register Direct Addressing: 

 

Register direct addressing transfer a copy of a byte or word from source register to 

destination register. 

 

Ex: MOV B, C 

It copies the content of register C to register B. 

 

Indirect Addressing: 

 

Indirect addressing transfers a byte or word between a register and a memory location. 

 

Ex: MOV A, M 

Here the data is in the memory location pointed to by the contents of HL pair. The data is 

moved to the accumulator. 

 

Implicit Addressing 

 

In this addressing mode the data itself specifies the data to be operated upon. 

 

Ex: CMA 

The instruction complements the content of the accumulator. No specific data or operand is 

mentioned in the instruction. 

 

INSTRUCTION SET OF 8085 

 

Based on the design of the ALU and decoding unit, the microprocessor manufacturer provides instruction 

set for every microprocessor. The instruction set consists of both machine code and mnemonics. 

 

An instruction is a binary pattern designed inside a microprocessor to perform a specific function. The 

entire group of instructions that a microprocessor supports is called instruction set. Microprocessor 

instructions can be classified based on the parameters such functionality, length and operand addressing. 

 

 

Data transfer operations:  

 

This group of instructions copies data from source to destination. The content of the source is not altered. 

 

 



 
 

 

 



 
 

 

 

 

 

 

 



Arithmetic operations: 

 

 Instructions of this group perform operations like addition, subtraction, increment & decrement. One of 

the data used in arithmetic operation is stored in accumulator and the result is also stored in accumulator. 

 

 

 
 

 

 

 



 
 

 

 

 

 

 

 

 

 



 

 
 

 

Logical operations:  

 

Logical operations include AND, OR, EXOR, NOT. The operations like AND, OR and EXOR uses two 

operands, one is stored in accumulator and other can be any register or memory location. The result is stored 

in accumulator. NOT operation requires single operand, which is stored in accumulator. 

 

 
 

 



 
 

 

 

 

 

 



 

 
 

 



Branching operations: 

 

 Instructions in this group can be used to transfer program sequence from one memory location to another 

either conditionally or unconditionally. 

 

 
 

 



 
 

 
 



Machine control operations: 

 

 Instruction in this group control execution of other instructions and control operations like interrupt, halt 

etc. 

 
INSTRUCTION EXECUTION AND TIMING DIAGRAM 

 

 

Each instruction in 8085 microprocessor consists of two part- operation code (opcode) and operand. The 

opcode is a command such as ADD and the operand is an object to be operated on, such as a byte or the 

content of a register. 

 

Instruction Cycle: The time taken by the processor to complete the execution of an 

instruction. An instruction cycle consists of one to six machine cycles. 

 

Machine Cycle: The time required to complete one operation; accessing either the memory 

or I/O device. A machine cycle consists of three to six T-states. 

 

T-State: Time corresponding to one clock period. It is the basic unit to calculate execution 

of instructions or programs in a processor. 

 

 

 

 



 

 

 

 

 

To execute a program, 8085 performs various operations as: 

 Opcode fetch 

 Operand fetch 

 Memory read/write 

 I/O read/write 

 

External communication functions are: 

 Memory read/write 

 I/O read/write 

 Interrupt request acknowledge 

 

Opcode Fetch Machine Cycle: 

 

T1 clock cycle 

 

 The content of PC is placed in the address bus; AD0 - AD7 lines contains lower bit address and 

A8 A15 contains higher bit address. 

 IO/M signal is low indicating that a memory location is being accessed. S1 and S0 also changed 

to the levels as indicated. 

 ALE is high, indicates that multiplexed AD0 AD7 act as lower order bus. 

 

T2 clock cycle 

 

 Multiplexed address bus is now changed to data bus. 

 The RD signal is made low by the processor. This signal makes the memory device load the data 

bus with the contents of the location addressed by the processor. 

 

T3 clock cycle 

 

 The opcode available on the data bus is read by the processor and moved to the instruction 

register. 

 The RD signal is deactivated by making it logic 1. 

 

T4 clock cycle 

 

 The processor decode the instruction in the instruction register and generate the 

 necessary control signals to execute the instruction. Based on the instruction further operations 

such as fetching, writing into memory etc takes place. 

 
 
 
 
 
 
 



 
 
 
 
Timing diagram for opcode fetch cycle 

 

 
 

Memory Read Machine Cycle: 

 

The memory read cycle is executed by the processor to read a data byte from memory. The 

machine cycle is exactly same to opcode fetch except: a) It has three T-states b) The S0 

signal is set to 0. The timing diagram of this cycle is given in 

 
Memory Write Machine Cycle: 

 

The memory write cycle is executed by the processor to write a data byte in a memory 

location. The processor takes three T-states and WR signal is made low. The timing 

diagram of this cycle is given in 

 



 
 
I/O Read Cycle: 

 

The I/O read cycle is executed by the processor to read a data byte from I/O port or from peripheral, 

which is I/O mapped in the system. The 8-bit port address is placed both in the lower and higher order 

address bus. The processor takes three T-states to execute this machine cycle.  

 

 

8085 INTERRUPTS 

 
Interrupt Structure: 

 

Interrupt is the mechanism by which the processor is made to transfer control from its 

current program execution to another program having higher priority. The interrupt signal may be given 

to the processor by any external peripheral device. 

 

The program or the routine that is executed upon interrupt is called interrupt service routine (ISR). After 

execution of ISR, the processor must return to the interrupted program. Key features in the interrupt 

structure of any microprocessor are as follows: 

 

Number and types of interrupt signals available. 

 The address of the memory where the ISR is located for a particular interrupt signal. This address 

is called interrupt vector address (IVA). 

 Masking and unmasking feature of the interrupt signals. 

 Priority among the interrupts. 

 Timing of the interrupt signals. 

 Handling and storing of information about the interrupt program. 

 

 

 

 

 



Types of Interrupts: 

 

i. Vectored and Non-Vectored Interrupts 

 

Vectored interrupts require the IVA to be supplied by the external device that gives the interrupt signal. 

This technique is vectoring, is implemented in number of ways. Non-vectored interrupts have fixed IVA 

for ISRs of different interrupt signals. 

 

ii. Maskable and Non-Maskable Interrupts 

 

Maskable interrupts are interrupts that can be blocked. Masking can be done by software or hardware 

means. Non-maskable interrupts are interrupts that are always recognized; the corresponding ISRs are 

executed. 

 

iii. Software and Hardware Interrupts 

 

Software interrupts are special instructions, after execution transfer the control to predefined ISR. 

Hardware interrupts are signals given to the processor, for recognition as an interrupt and execution of the 

corresponding ISR. 

 

Interrupt Handling Procedure: 

 

The following sequence of operations takes place when an interrupt signal is recognized: 

 

 Save the PC content and information about current state (flags, registers etc) in the stack. 

 Load PC with the beginning address of an ISR and start to execute it. 

 Finish ISR when the return instruction is executed. 

 Return to the point in the interrupted program where execution was interrupted. 

 

Software Interrupts: 

 

8085 instruction set includes eight software interrupt instructions called Restart (RST) instructions. These 

are one byte instructions that make the processor execute a subroutine at predefined locations. Instructions 

and their vector addresses are given in Table 

 
 

The software interrupts can be treated as CALL instructions with default call locations. The concept of 

priority does not apply to software interrupts as they are inserted into the program as instructions by the 

programmer and executed by the processor when the respective program lines are read. 



 

Hardware Interrupts and Priorities: 

 

8085 have five hardware interrupts INTR, RST 5.5, RST 6.5, RST 7.5 and TRAP. Their IVA and 

priorities are given in Table 

 

 
Masking of Interrupts: 

 

Masking can be done for four hardware interrupts INTR, RST 5.5, RST 6.5, and RST 7.5. The masking of 

8085 interrupts is done at different levels. Fig. 13 shows the organization of hardware interrupts in the 

8085. 

 
 

 

 The maskable interrupts are by default masked by the Reset signal. So no interrupt is recognized 

by the hardware reset. 

 The interrupts can be enabled by the EI instruction. 

 The three RST interrupts can be selectively masked by loading the appropriate word in the 

accumulator and executing SIM instruction. This is called software masking. 

 All maskable interrupts are disabled whenever an interrupt is recognized. 

 All maskable interrupts can be disabled by executing the DI instruction. RST 7.5 alone has a flip-

flop to recognize edge transition. The DI instruction reset interrupt enable flip-flop in the processor 

and the interrupts are disabled. To enable interrupts, EI instruction has to be executed. 

 



 

RST 7.5 alone has a flip-flop to recognize edge transition. The DI instruction reset interrupt enable flip-

flop in the processor and the interrupts are disabled. To enable interrupts, EI instruction has to be executed. 

 

SIM Instruction: 

 

The SIM instruction is used to mask or unmask RST hardware interrupts. When executed, the SIM 

instruction reads the content of accumulator and accordingly mask or unmask the interrupts. 

 

 
 

RIM Instruction: 

 

RIM instruction is used to read the status of the interrupt mask bits. When RIM instruction is executed, 

the accumulator is loaded with the current status of the interrupt masks and the pending interrupts. 

 

 

 

 

 



UNIT-II 

Pre - requisite:  

 To Study the Architecture of 8086 and configurations 

Outcomes 

 Analyze the basic concepts of 8086bmicroprocessor and instructions set 

 To learn the design aspects of I/O and minimum , maximum mode circuits. 

 

INTRODUCTION 8086 MICROPROCESSOR 

 

It is a semiconductor device consisting of electronic logic circuits manufactured by using either a Large 

scale (LSI) or Very Large Scale (VLSI) Integration Technique. It includes the ALU, register arrays and 

control circuits on a single chip. The microprocessor has a set of instructions, designed internally, to 

manipulate data and communicate with peripherals.  

 

The era microprocessors in the year 1971, the Intel introduced the first 4-bit microprocessor is 4004. Using 

this the first portable calculator is designed. The 16-bit Microprocessor families are designed primarily to 

complete with microcomputers and are oriented towards high-level languages. They have powerful 

instruction sets and capable of addressing megabytes of memory. The era of 16-bit Microprocessors began 

in 1974 with the introduction of PACE chip by National Semiconductor. The Texas Instruments TMS9900 

was introduced in the year 1976. The Intel 8086 commercially available in the year 1978, Zilog Z800 in the 

year 1979, The Motorola MC68000 in the year 1980. The 16-bit Microprocessors are available in different 

pin packages. Ex: Intel 8086/8088 40 pin package Zilog Z8001 40 pin package, Digital equipment LSI-II 

40 pin package, Motorola MC68000 64 pin package National Semiconductor NS16000 48 pin package. 

 

The primary objectives of this 16-bit Microprocessor can be summarized as follows. 

 

1. Increase memory addressing capability 

2. Increase execution speed 

3. Provide a powerful instruction set 

4. Facilitate programming in high-level languages. 

 

Microprocessor Architecture: 

 

The 8086 CPU is divided into two independent functional parts, the Bus interface unit (BIU) and 

execution unit (EU).  

The Bus Interface Unit contains Bus Interface Logic, Segment registers, Memory addressing logic 

and a Six byte instruction object code queue. The BIU sends out address, fetches the instructions 

from memory, read data from ports and memory, and writes the data to ports and memory.  

The execution unit: contains the Data and Address registers, the Arithmetic and  Logic Unit, the 

Control Unit and flags. tells the BIU where to fetch instructions or data from, decodes instructions 

and executes instruction. The EU contains control  circuitry which directs internal operations. A 

decoder in the EU translates instructions fetched from memory into a series of actions which the EU 

carries out.  The EU is has a 16-bit ALU which can add, subtract, AND, OR, XOR, increment, 

decrement, complement or shift binary numbers. The EU is decoding an instruction or executing an 

instruction which does not require use of the buses. 

 



 cx

 
 

Register organization of 8086:  
 

All the registers of 8086 are 16-bit registers. The general purpose registers, can be used  either 8-bit 

registers or 16-bit registers used for holding the data, variables and intermediate results temporarily 

or for other purpose like counter or for storing offset address for some  particular addressing modes 

etc. The special purpose registers are used as segment  registers, pointers, index registers or as offset 

storage registers for particular addressing modes. 



  
 

AX Register: Accumulator register consists of two 8-bit registers AL and AH, which can be 

combined together and used as a 16- bit register AX. AL in this case contains the low-order byte of 

the word, and AH contains the high-order byte. Accumulator can be used for I/O operations, rotate 

and string manipulation. 

BX Register: This register is mainly used as a base register. It holds the starting base location of a 

memory region within a data segment. It is used as offset storage for forming physical address in 

case of certain addressing mode.  

CX Register: It is used as default counter - count register in case of string and loop instructions. 

DX Register: Data register can be used as a port number in I/O operations and  implicit operand or 

destination in case of few instructions. In integer 32-bit multiply and divide instruction the DX 

register contains high-order word of the initial or resulting number.  

 

Segment registers:  

 

Memory Segmentation 

 
 



1Mbyte memory is divided into 16 logical segments. The complete 1Mbyte memory segmentation is 

as shown in fig 1.4. Each segment contains 64Kbyte of memory. There are four segment registers. 

Code segment (CS) is a 16-bit register containing address of 64 KB segment .The CS register is 

automatically updated during far jump, far call and far return instructions. It is used for addressing a 

memory location in the code segment of the memory, where the executable program is stored. 

 

Stack segment (SS) is a 16-bit register containing address of 64KB segment with program stack. By 

default, the processor assumes that all data referenced by the stack pointer (SP) and base pointer (BP) 

registers is located in the stack segment. SS register can be changed directly using POP instruction. It 

is used for addressing stack segment of memory. The stack segment is that segment of memory, 

which is used to store stack data. 



Data segment (DS) is a 16-bit register containing address of 64KB segment with program data. By 

default, the processor assumes that all data referenced by general registers (AX, BX, CX, DX) and 

index register (SI, DI) is located in the data segment. DS register can be changed directly using POP 

and LDS instructions. It points to the data segment memory where the data is resided. 



Extra segment (ES) is a 16-bit register containing address of 64KB segment, usually with program 

data. By default, the processor assumes that the DI register references the ES segment in string 

manipulation instructions. ES register can be changed directly using POP and LES instructions. It 

also refers to segment which essentially is another data segment of the memory. 



Pointers and index registers. 

 

The pointers contain within the particular segments. The pointers IP, BP, SP usually contain offsets 

within the code, data and stack segments respectively  

Stack Pointer (SP) is a 16-bit register pointing to program stack in stack segment. 

Base Pointer (BP) is a 16-bit register pointing to data in stack segment. BP register is usually used 

for based, based indexed or register indirect addressing.  

Source Index (SI) is a 16-bit register. SI is used for indexed, based indexed and register  indirect 

addressing, as well as a source data addresses in string manipulation instructions. 



Destination Index (DI) is a 16-bit register. DI is used for indexed, based indexed and register 

indirect addressing, as well as a destination data address in string manipulation instructions.  


Flag Register: 

 

 
 

Flags Register determines the current state of the processor. They are modified automatically by CPU 

after mathematical operations, this allows to determine the type of the result, and to determine 

conditions to transfer control to other parts of the program. 

8086 has 9 active flags and they are divided into two categories:  

1. Conditional Flags  

2. Control Flags 



 

Conditional Flags 

 

Carry Flag (CY): This flag indicates an overflow condition for unsigned integer  

arithmetic. It is also used in multiple-precision arithmetic.  

Auxiliary Flag (AC): If an operation performed in ALU generates a carry/barrow from lower nibble 

(i.e. D0 – D3) to upper nibble (i.e. D4 – D7), the AC flag is set i.e. carry given by D3 bit to D4 is AC 

flag. This is not a general-purpose flag, it is used internally by the Processor to perform Binary to 

BCD conversion.  

Parity Flag (PF): This flag is used to indicate the parity of result. If lower order 8- bits of the result 

contains even number of 1‘s, the Parity Flag is set and for odd number of  

1‘s, the Parity flag is reset.  

Zero Flag (ZF): It is set; if the result of arithmetic or logical operation is zero else it is reset.  

Sign Flag (SF): In sign magnitude format the sign of number is indicated by MSB  

bit. If the result of operation is negative, sign flag is set. 

 

Control Flags 

 

Control flags are set or reset deliberately to control the operations of the execution unit. Control flags 

are as follows:  

 

Trap Flag (TF): It is used for single step control. It allows user to execute one instruction of a 

program at a time for debugging. When trap flag is set, program can be run in single step mode.  

Interrupt Flag (IF): It is an interrupt enable/disable flag. If it is set, the maskable interrupt of 8086 

is enabled and if it is reset, the interrupt is disabled. It can be set by executing instruction sit and can 

be cleared by executing CLI instruction. 

Direction Flag (DF): It is used in string operation. If it is set, string bytes are accessed from higher 

memory address to lower memory address. When it is reset, the string bytes are accessed from lower 

memory address to higher memory address. 

 

Addressing Modes  
The 8086 has 12 addressing modes can be classified into five groups.  

 Addressing modes for accessing immediate and register data (register and immediate modes).  

 Addressing modes for accessing data in memory (memory modes)  

 Addressing modes for accessing I/O ports (I/O modes)  

 Relative addressing mode  

 Implied addressing mode 

 

Immediate addressing mode:  

 In this mode, 8 or 16 bit data can be specified as part of the instruction - OP Code Immediate 

Operand  

 Example 1: MOV CL, 03 H:Moves the 8 bit data 03 H into CL  

 Example 2: MOV DX, 0525 H: Moves the 16 bit data 0525 H into DX  

 In the above two examples, the source operand is in immediate mode and the destination 

operand is in register mode. A constant such as ―VALUE‖ can be defined by the assembler 

EQUATE directive such as VALUE EQU 35H  

 Example: MOV BH, VALUE Used to load 35 H into BH 

 



Direct addressing mode: 

In the direct addressing mode, a 16-bit memory address (offset) is directly specified in the 

instruction as a part of it. 

 

Example: MOV AX,[5000H] 

Here, data resides in a memory location in the data segment, whose effective address may be 

computed using 5000H as the offset address and content of DS as segment address. The effective 

address, hare, is 10H*DS+5000H 

 

Register addressing mode: 

In register addressing mode, the data is stored in a register and it is referred using the particular 

register. All the registers, except IP, may be used in this 

mode. 

 

Example: MOV AX,BX 

 

Register Indirect addressing mode:  

 

Sometimes, the address of the memory location which contains data or operand is determined in 

an indirect way, using the offset registers. This mode of addressing is known as register indirect 

mode. In this addressing mode, the offset address of data is in either BX or SI or DI register. The 

default segment is either DS or ES. The data is supposed to be available at the address pointed to 

by the content of any of the above registers in the default data segment. 

 

Example: MOV AX,[BX] 

Here, data is present in a memory location in DS whose offset address is in BX. The effective 

address of the data is given as 10H*DS+[BX]. 

 

Indexed addressing mode:  

 

In this addressing mode, offset of the operand is stored in one of the index registers. DS and ES 

are the default segments for index register SI and DI respectively. This mode is a special case of 

the above discussed register indirect addressing 

mode. 

 

Example: MOV AX,[SI] 

Here, data is available at an offset address stored in SI in DS. The effective address, in this case, 

is computed as 10H*DS+[SI]. 

 

Register Relative addressing mode: 

 

In this addressing mode, the data is available at an effective address formed by adding an 8-bit or 

16-bit displacement with the content of any one of the registers BX, BP, SI and DI in the default 

(either DS or ES) segment. The example given below explains this mode. 

 

Example: MOV AX,[BX]50H 

Here, the effective address is given as 10H*DS+50H+[BX]. 



 

Based Indexed addressing mode:  

 

The effective address of data is formed, in this addressing mode, by adding content of a base 

register (any one of BX or BP) to the content of an index register (any one of SI or DI). The 

default segment register may be ES or DS. 

 

Example: MOV AX,[SI] [BX] 

Here, BX is the base register and SI is the index register. The effective address is computed 

as 10H*DS+[BX]+[SI]. 

 

Relative Based Indexed addressing mode:  

 

The effective address is formed by adding an 8 or 16-bit displacement with the sum of contents 

of any one of the base registers (BX or BP) and any one of the index registers, in a default 

segment. 

 

Example: MOV AX,[SI] [BX] 

Here, 50H is an immediate displacement, BX is a base register and SI is an index register. The 

effective address of data is computed as 160H*DS+[BX]+[SI]+50H. 

 

Instruction Set of the 8086 processor 
 

The 8086/8088 instructions are categorized into the following main types. This section explains 

the function of each of the instructions with suitable examples wherever necessary. 

 

Data Copy/Transfer Instructions  

 

This types of instructions are used to transfer data from source operand to destination operand. 

All the store, move, load, exchange, input and output instructions belong to this category. 

 

MOV: Move This data transfer instruction transfers data from one register/memory location to 

another register/memory location. The source may be any one of the segment registers or other 

general or special purpose registers or a memory location and , another register or memory 

location may act as destination. 

 

MOV AX, 5000H 

MOV DS, AX 

It may be noted, here, the both source and destination operands cannot be memory 

locations (Except for string instructions). Other MOV instruction example is given below 

with the corresponding addressing modes. 

MOV AX, BX; Register 

 

IN: Input the port This instruction is used for reading an input port. The address of the input 

port may be specified in the instruction directly or indirectly. AL and AX are the allowed 

destinations for 8 and 16-bit input operations. DX is the only register (implicit) which is allowed 

to carry the port address. 



 

Example 

1. IN AL, 0300H ; This instruction reads data from an 8-bitport whose address is 

0300H and stores it in AL. 

 

OUT: Output to the Port This instruction is used for writing to an output port. The address 

of the output port may be specified in the instruction directly or implicitly in DX. Contents of 

AX or AL are transferred to a directly or indirectly addressed port after execution of this 

instruction. The data to an odd addressed port is transferred on D8-D15 while that to an even 

addressed port is transferred port is transferred on D0-D7. The registers AL and AX are the 

allowed source operands for 8-bit and 16-bit operations respectively. 

Example 

1. OUT 0300H, AL ; This sends data available in AL to a port 

whose address is 0300H. 

 

Arithmetic and Logical Instructions All the instructions performing arithmetic, 

logical, increment, decrement, compare and scan instructions belong to this 

category. 

 

ADD: Add This instruction adds an immediate data or contents of a memory location specified 

in the instruction or a register (source) to the contents of another register (destination) or memory 

location. The result is in the destination operand. However, both the source and destination 

operands cannot be memory operands. The examples of this instruction is given along with the 

corresponding modes. 

 

Example 

1. ADD AX, 0100hH Immediate 

 

INC: Increment This instruction increments the contents of the specified register or memory 

location by 1. All the condition code flags are affected except the carry flag CF. This instruction 

adds 1 to the contents of the operand. Immediate data cannot be operand of this instruction. The 

examples of this instruction is as follows: 

 

Example 
1. INC AX Register 

 

DEC: Decrement The decrement instruction subtracts 1 from the contents of the specified 

register of memory location. The examples of this instruction is as follows: 

 

Example 

1. DEC AX Register 

 

SUB: Subtract The subtract instruction subtracts the source operand from the destination 

operand and the result is left in the destination operand. The examples of this instruction along 

with the addressing modes are as follows: 

 



Example 

1. SUB 0100H Immediate [destination AX] 

 

MUL: Unsigned Multiplication Byte or Word This instruction multiplies an unsigned byte 

or would by the contents of AL. The unsigned byte or word may be in any one of the general 

purpose registers or memory locations. The most significant word of the result is stored in 

DX, while the least significant word of the result is stored in AX. All the flags are modified 

depending upon the result. The example instructions are as shown. Immediate operand is not 

allowed in this instruction. If the most significant byte or word or the result is ‘0’ CF and OF 

both will be set. 

 

Example 

1. MUL BH ; (AX) (AL) x (BH) 

2. MUL CX ; (DX) (AX) (AX) x (CX) 

 

DIV: Unsigned Division This instruction performs unsigned division. It division an unsigned 

word or double word by a 16-bit or 8-bit operand. The dividend must be in AX for 16-bit operation 

and divisor may be specified using any one of the addressing modes except immediate. The result 

ill be in AL (quotient) while AH will contain the remainder. If the result is too big to fit in AL, 

type 0 (divide by zero) interrupt is generated. In case of double would divided (32-bit), the higher 

word should be in DX and lower would should be in AX. The divisor may be specified as already 

explained. The quotient and the remainder, in this case, will be in AX and DX respectively. The 

instruction does not affect any flag. 

 

Logical Instructions 

 

These type of instructions are used for carrying out the bit by bit shift, rotate, or basic logical 

operations. All the condition code flags are affected upon the result. Basic logical operations 

available with 8086 instruction set are AND, OR, NOT, and XOR. The instruction  for each of 

these operations are discussed as follows. 

 

AND: Logical AND This instruction bit by bit ANDs the source operand that may be an 

immediate, a register or a memory location to the destination operand that may be a register or a 

memory location. The result is stored in the destination operand. At least one of the operands 

should be a register or a memory operand. Both the operands cannot be memory locations or 

immediate operands. An immediate operand cannot be a destination operand. 

The example of this instruction is as follows:  

 

Example 

1. AND AX, 0008H 

 

OR: Logical OR The OR instruction carries out the OR operation in the same way as described 

in case of the AND operation. The limitations on source and destination operands are also the 

same as in case of AND operation. The example are as follows: 

 

Example 



1. OR AX, 0098H 

2. OR AX, BX 

 

XOR: Logical Exclusive OR The XOR operation is again carried out in a similar way to the 

operation. The constraints on the operands are also similar. The XOR operation gives a high 

output, when the 2 input bits are dissimilar. Otherwise, the output is zero. The example 

instructions is as follows: 

 

Shift and Rotate Instructions There instructions involve the bitwise shifting 

rotating in either direction with or without a count in CX. 

 

SHIFT INSTRUCTIONS: 

 

The four shift instructions of the 8086 can perform two basic types of shift operations; the 

logical shift and the arithmetic shift. Moreover, each of these operations can be performed to 

the right or to the left. 

The shift instructions are shift logical left (SHL), shift arithmetic left (SAL), shift logical 

right (SHR) and shift arithmetic right (SAR). These instructions are used to align data, to 

isolate bits of a byte or word so that it can be tested, and to perform simple multiply and divide 

computations. 

SAL / SHL Instruction : 

SAL destination, count 

SHL destination , count 

 

SAL and SHL are two mnemonics for the same instruction. This instruction shifts each bit in the 

specified destination to the left and 0 is stored at LSB position. The MSB is shifted into the carry 

flag. The destination can be a byte or a word. It can be in a register or in a memory location. The 

number of shifts are indicated by count. But if the number of shifts required is one, you can place 

1 in the count position. If number of shifts are greater than 1 then shift count must be loaded in 

CL register and CL must be placed in the count position of the instruction. 

 

ROL Instruction : This instruction rotates all bits in a specified byte or word to the left some 

number of bit positions. MSB is placed as a new LSB and a new CF. The destination can be byte 

or a word. It can be in a register or in a memory location. The number of shifts are indicated by 

count. If number of shifts required is one you can place 1 in the count position. If number of 

shifts are greater than 1 then shift count must be loaded in CL register and CL must be placed in 

the count position of the instruction. 

 

String Manipulation Instructions 

 

A series of data bytes or words available in memory at consecutive locations, to be referred to 

collectively of individually, are called as byte strings or word strings. For referring to a string, 

two parameters are required, (a) starting or end address of the string and (b) length of the string. 

The length of a string is usually stored as count in CX register. 

 

REP / REPE / REPZ / REPNE / REPNZ instructions: REP is a prefix which is written 



before one of the string instructions. These instructions repeat until specified condition exists. 

 

MOVSB / MOVSW INSTRUCTION 

These instructions are used to move one byte or one word from one location to another location. 

MOVSB is used to move byte strings and MOVSW is used to move word strings. 

 

Example : Assume STRING1 is a string of bytes. To copy STRING1 (forward) to STRING2, 

the following statements are used. 

 

LEA SI , STRING1 ;copy the offset of the STRING1 to SI 

LEA DI , STRING2 ;copy the offset of the STRING2 to DI 

MOV CX,LENGTH STRING1 ; copy the length of the STRING1 to CX 

CLD ; clear direction flag for forward move 

REP MOVSB 

 

CMPSB / CMPSW INSTRUCTIONS: 

 

These instructions are used to compare one byte or one word from one location to another 

location. CMPSB is used to compare byte strings and CMPSW is used to compare word strings. 

The CMPS instruction can be used with REP , REPE or REPNE prefix to compare all the 

elements of a string. 

 

Branch Instructions There instructions have REP prefix with CX used as count register, they 

can be used to implement unconditional and conditional loops. The LOOP, LOOPNZ and 

LOOPZ instructions belong to this category. These are useful to implement different loop 

structure. 

 

Unconditional Control Transfer (Branch) Instruction: In case of unconditional control 

transfer instructions, the execution control is transferred to the specified location independent of 

any status or conditional. The CS and IP are unconditionally modified to the new CS and IP. 

JMP: Unconditional Jump This instruction unconditionally transfers the control of execution to 

the specified address using an 8-bit or 16-bit displacement (intrasegment relative, short or long) 

or CS: IP (intersegment direct far). No flags are affected by this instruction. Corresponding to the 

three methods of specifying jump addresses 

 

Conditional Control Transfer (Branch) Instructions: In the conditional control transfer 

instructions, the control is transferred to the specified location provided the result of the previous 

operation satisfies a particular condition, otherwise, the execution continues in normal flow 

sequence. The results of the previous operations are replicated by condition code flags. 

 

JCXZ ‘Label’ Transfer execution control to address ‘Label’, if CX=0. 

 

Loop Instructions If these instructions have REP prefix with CX used as count 

register, they can be used to implement unconditional and conditional loops. The 

LOOP, LOOP, LOOPNZ and LOOPZ instructions belong to this category. These 

are useful to implement different loop structures. 



 

LOOPZ / LOOPE Label Loop through a sequence of instructions 

from ‘Label’ while ZE=0 and CX = 0. 

LOOPZ / LOOPENE Label Loop through a sequence of instructions 

from ‘Label’ while ZE=0 and CX = 0. 

 

Machine Control Instructions There instructions control the machine status. 

NOP, HLT, WAIT and LOCK instructions belong to this class. 

 

WAIT - Wait for Test input pin to go low 

HIT - Halt the processor 

NOP - No operation 

After executing the HLT instruction, the processor enters the halt state. The two ways to pull it 

out of the halt state are to reset the processor or to interrupt it. When NOP instruction 

 

Flag Manipulation Instructions All the instructions which directly affect the flag register, 

come under this group of instructions. Instructions like CLD, STD, CLI, STI, etc. belong to this 

category of instructions. 

 

CLC - Clear carry flag 

STC - Set carry flag 

CLD - Clear direction flag 

STD - Set direction flag 

 

These instruction modify the carry(CF), direction(DF) and interrupt(IF) flags directly. The 

DF and IF, which may be modified using the flag manipulation instructions, further control 

the processor operation; like interrupt responses and auto increment or auto decrement modes. 

 

Minimum mode Operation and Maximum Mode Operation 

 

In a minimum mode 8086 system, the microprocessor 8086 is operated in minimum mode by 

strapping its MN/MX* pin to logic1. In this mode, all the control signals are given out by the 

microprocessor chip itself. There is a single microprocessor in the minimum mode system. The 

remaining components in the system are latches, transceivers, clock generator, memory and I/O 

devices.  

 

The opcode fetch and read cycles are similar. Hence the timing diagram can be categorized in two 

parts, the first is the timing diagram for read cycle and the second is the timing diagram for write 

cycle. The read cycle timing diagram. The read cycle begins in T1 with the assertion of the address 

latch enable (ALE) signal and also M/IO* signal. During the negative going edge of this signal, 

the valid address is latched on the local bus. The BHE* and A0 signals address low, high or both 

bytes. From Tl to T4, the M/IO* signal indicates a memory or I/O operation. At T2 the address is 

removed from the local bus and is sent to the output. The bus is then tristated. The read (RD*) 

control signal is also activated in T2 .The read (RD) signal causes the addressed device to enable 

its data bus drivers. After RD* goes low, the valid data is available on the data bus. The addressed 



device will drive the READY line high, when the processor returns the read signal to high level, 

the addressed device will again tristate its bus drivers. 

 

 

 

 
 

 

 
 

A write cycle also begins with the assertion of ALE and the emission of the address. The M/IO* signal 

is again asserted to indicate a memory or I/O operation. In T2 after sending the address in Tl the 

processor sends the data to be written to the addressed location. The data remains on the bus until 

middle of T4 state. The WR* becomes active at the beginning ofT2 (unlike RD* is somewhat delayed 

in T2 to provide time for floating). The BHE* and A0 signals are used to select the proper byte or bytes 

of memory or I/O word to be read or written. The M/IO*, RD* and WR* signals indicate the types of 

data transfer as specified in Table 

 

In the maximum mode, the 8086 is operated by strapping the MN/MX* pin to ground. In this mode, 

the processor derives the status signals S2*, S1* and S0*. Another chip called bus controller derives 

the control signals using this status information. In the maximum mode, there may be more than one 

microprocessor in the system configuration.  

 

The basic functions of the bus controller chip IC8288, is to derive control signals like RD* and WR* 

(for memory and I/O devices), DEN*, DT/R*, ALE, etc. using the information made available by the 

processor on the status lines. The bus controller chip has input lines S2*, S1* and S0* and CLK. These 

inputs to 8288 are driven by the CPU. It derives the outputs ALE, DEN*, DT/R*, MWTC*, AMWC*, 



IORC*, IOWC* and AIOWC*. The AEN*, IOB and CEN pins are especially useful for multiprocessor 

systems. AEN* and IOB are generally grounded. CEN pin is usually tied to +5V. 

 

 
The significance of the MCE/PDEN* output depends upon the status of the IOB pin. If IOB is 

grounded, it acts as master cascade enable to control cascaded 8259A; else it acts as peripheral data 

enable used in the multiple bus configurations. INTA* pin is used to issue two interrupt acknowledge 

pulses to the interrupt controller or to an interrupting device. IORC*, IOWC* are I/O read command 

and I/O write command signals respectively.  

 

These signals enable an IO interface to read or write the data from or to the addressed port. The 

MRDC*, MWTC* are memory read command and memory write command signals respectively and 

may be used as memory read and write signals. All these command signals instruct the memory to 

accept or send data from or to the bus.  

 

For both of these write command signals, the advanced signals namely AIOWC* and AMWTC* are 

available. They also serve the same purpose, but are activated one clock cycle earlier than the IOWC* 

and MWTC* signals, respectively. The maximum mode system timing diagrams are also divided in 

two portions as read (input) and write (output) timing diagrams. The address/data and address/status 

timings are similar to the minimum mode. ALE is asserted in T1, just like minimum mode. The only 

difference lies in the status signals used and the available control and advanced command signals. 

 

 

 

 

 

 

 



ASSEMBLY LANGUAGE PROGRAMMING 

 

ALP for addition of two 8-bit numbers 

 

MOV DS, AX                    

MOV AL, VAR1               

MOV BL, VAR2               

ADD AL, BL                     

MOV RES, AL                  

MOV AH, 4CH                 

INT 21H                            

CODE ENDS                    

END START                     

 

ALP for Subtraction of two 8-bit numbers 

START: MOV AX,DATA 

MOV DS,AX 

MOV AL,VAR1 

MOV BL,VAR2 

SUB AL,BL 

MOV RES,AL 

MOV AH,4CH 

INT 21H 

CODE ENDS 

 

ALP for Multiplication of two 8-bit numbers 

START: MOV AX, DATA MOV DS, AX  

MOV AL, VAR1  

MOV BL, VAR2  

MUL BL  

MOV RES, AX MOV AH, 4CH INT 21H  

CODE ENDS  

END START 

 

ALP for division of 16-bit number with 8-bit number 

 

START: MOV AX, DATA MOV DS, AX  

MOV AX, VAR1  

DIV VAR2  

MOV QUO, AL  

MOV REM, AH  

MOV AH, 4CH  

INT 21H  

CODE ENDS  

END START 

 



UNIT-III 

Pre - requisite:  

 To Study about communication and bus interfacing. 

Outcomes 

 Design interfacing peripherals like, I/O, A/D, D/A, timer etc. 

 

Memory Devices and Interfacing  

 

Any application of a microprocessor based system requires the transfer of data between external 

circuitry to the microprocessor and microprocessor to the external circuitry. Most of the peripheral 

devices are designed and interfaced with a CPU either to enable it to communicate with the user or an 

external process and to ease the circuit operations so that the microprocessor works more efficiently.  

The use of peripheral integrated devices simplifies both the hardware circuits and software 

considerable. The following are the devices used in interfacing of Memory and General I/O devices  

 

• 74LS138 (Decoder / Demultiplexer).  

• 74LS373 / 74LS374 3-STATE Octal D-Type Transparent Latches.  

• 74LS245 Octal Bus Traniver: 3-State.  

 

74LS138 (Decoder / Demultiplexer)  

 

The LS138 is a high speed 1-of-8 Decoder/ Demultiplexer fabricated with the low power Schottky 

barrier diode process. The decoder accepts three binary weighted inputs (A0, A1, A2) and when 

enabled provides eight mutually exclusive active LOW Outputs (O0–O7).  

The LS138 can be used as an 8-output demultiplexer by using one of the active LOW Enable inputs as 

the data input and the other Enable inputs as strobes. The Enable inputs which are not used must be 

permanently tied to their appropriate active HIGH or  
active LOW state. 

74LS373 / 74LS374 3-STATE Octal D-Type Transparent Latches and Edge-Triggered  

Flip-Flops  
These 8-bit registers feature totem-pole 3-STATE outputs designed specifically for implementing 

buffer registers, I/O ports, bidirectional bus drivers, and working registers. The eight latches of the 

74LS373 are transparent D type latches meaning that while the enable (G) is HIGH the Q outputs will 

follow the data (D) inputs.  

When the enable is taken LOW the output will be latched at the level of the data that was  

set up. The eight flip-flops of the 74LS374 are edge-triggered D-type flip flops. On the positive 

transition of the clock, the Q outputs will be set to the logic states that were set up at the D inputs.  

Main Features  
• Choice of 8 latches or 8 D-type flip-flops in a single package  

• 3-STATE bus-driving outputs  

• Full parallel-access for loading  

• Buffered control inputs  

• P-N-P inputs reduce D-C loading on data lines 

 

74LS245 Octal Bus Traniver: 3-State  



 

The 74LS245 is a high-speed Si-gate CMOS device. The 74LS245 is an octal traniver featuring non- 

inverting 3-state bus compatible outputs in both send and receive directions. The 74LS245 features an 

Output Enable (OE) input for easy cascading and a send/receive  

(DIR) input for direction control. OE controls the outputs so that the buses are effectively isolated. All 

inputs have a Schmitt-trigger action.  

These octal bus tranivers are designed for asynchronous two-way communication between data buses. 

The 74LS245 is a high-speed Si-gate CMOS device. The 74LS245 is an octal traniver featuring non-

inverting 3-state bus compatible outputs in both send and receive directions.  
The 74LS245 features an Output Enable (OE) input for easy cascading and a send/receive (DIR) input 

for direction control. OE controls the outputs so that the buses are effectively isolated. All inputs have 

a Schmitt-trigger action. These octal bus tranivers are designed for asynchronous two-way 

communication between data buses. 

Memory Devices And Interfacing  

 

The memory interfacing circuit is used to access memory quit frequently to read instruction codes 

and data stored in the memory. The read / write operations are monitored by control  

signals. Semiconductor memories are of two types. Viz. RAM (Random Access Memory) and ROM 

(Read Only Memory) The Semiconductor RAM‘s are broadly two types- static Ram and dynamic 

RAM  

  
 

Memory structure and its requirements  

 

The read / write memories consist of an array of registers in which each register has unique address. 

The size of memory is N * M as shown in figure.  

Where N is number of register and M is the word length, in number of bits. As shown in figure(a) 

memory chip has 12 address lines Ao–A11, one chip select (CS), and two control lines, Read (RD) to 

enable output buffer and Write (WR) to enable the input buffer.  

The internal decoder is used to decoder the address lines. Figure(b) shows the logic diagram of a 

typical EPROM (Erasable Programmable Read-Only Memory) with 4096 (4K) register. It has 12 

address lines Ao – A11, one chip select (CS), one read control signal. Since EPROM does not require 

the (WR) signal.  



EPROM (or EPROMs) is used as a program memory and RAM (or RAMs) as a data memory. When 

both, EPROM and RAM are used, the total address space 1 Mbytes is shared by them.  

 

Address Decoding Techniques  
 

• Absolute decoding  

• Linear decoding  

• Block decoding  

 

Absolute Decoding: 

In the absolute decoding technique the memory chip is selected only for the specified logic level on the 

address lines: no other logic levels can select the chip. Below figure the memory interface with absolute 

decoding. Two 8K EPROMs (2764) are used to provide even and odd memory banks. Control signals BHE 

and Ao are use to enable output of odd and even memory banks respectively. As each memory chip has 8K 

memory locations, thirteen address lines are required to address each locations, independently. All 

remaining address lines are used to generate an unique chip select signal. This address technique is normally 

used in large memory systems 

 

Linear decoding 

In small system hardware for the decoding logic can be eliminated by using only required number of 

addressing lines (not all). Other lines are simple ignored. This technique is referred as linear 

decoding or partial decoding. Control signals BHE and Ao are used to enable odd and even memory 

banks, respectively. Figure shows the addressing of 16K RAM (6264) with linear decoding. The 

address line A19 is used to select the RAM chips. When A19 is low, chip is selected, otherwise it is 

disabled. The status of A14 to A18 does not affect the chip selection logic. This gives you multiple 

addresses (shadow addresses). This technique reduces the cost of decoding circuit, but it gas 

drawback of multiple addresses  

 



 
 

 

Block Decoding:  

 

In a microcomputer system the memory array is often consists of several blocks of memory chips. 

Each block of memory requires decoding circuit. To avoid separate decoding for each memory block 

special decoder IC is used to generate chip select signal for each block. 

 

 
 

Static Memory Interfacing  
The general procedure of static memory interfacing with 8086 as follows:  

1. Arrange the available memory chips so as to obtain 16-bit data bus width. The upper 8-bit bank is 

called ‗odd address memory bank‘ and the lower 8-bit bank is called ‗even address memory bank‘.  

2. Connect available memory address lines of memory chips with those of the microprocessor and 

also connect the memory RD and WR inputs to the corresponding processor control signals. Connect 

the 16-bit data bus of the memory bank with that of the microprocessor 8086.  

3. The remaining address lines of the microprocessor, BHE and Ao are used for decoding the 

required chip select signals for the odd and even memory banks. The CS of memory is derived from 

the output of the decoding circuit.  



4. As a good and efficient interfacing practice, the address map of the system should be continuous as 

far as possible  

Dynamic RAM Interfacing  
The basic Dynamic RAM cell uses a capacitor to store the charge as a representation of data. This 

capacitor is manufactured as a diode that is reverse-biased so that the storage capacitance comes into 

the picture. This storage capacitance is utilized for storing the charge representation of data but the 

reverse-biased diode has a leakage current that tends to discharge the capacitor giving rise to the 

possibility of data loss.  

To avoid this possible data loss, the data stored in a dynamic RAM cell must be refreshed after a 

fixed time interval regularly. The process of refreshing the data in the RAM is known as refresh 

cycle. This activity is similar to reading the data from each cell of the memory, independent of the 

requirement of microprocessor, regularly. During this refresh period all other operations (accesses) 

related to the memory subsystem are suspended.  

The advantages of dynamic RAM. Like low power consumption, higher packaging density and low 

cost, most of the advanced computer systems are designed using dynamic RAMs. Also the refresh 

mechanism and the additional hardware required makes the interfacing hardware, in case of dynamic 

RAM, more complicated, as compared to static RAM interfacing circuit.  

Interfacing I/O Ports  
I/O ports or input/output ports are the devices through which the microprocessor communicates with 

other devices or external data sources/destinations. Input activity, as one may expect, is the activity 

that enables the microprocessor to read data from external devices, for example keyboard, joysticks, 

mouser etc. the devices are known as input devices as they feed data into a microprocessor system.  

Output activity transfers data from the microprocessor top the external devices, for example CRT 

display, 7-segment displays, printer, etc, the devices that accept the data from a microprocessor 

system are called output devices.  

Steps in Interfacing an I/O Device  
The following steps are performed to interface a general I/O device with a CPU:  

1. Connect the data bus of the microprocessor system with the data bus of the I/O  

port.  

2. Derive a device address pulse by decoding the required address of the device and use it as the chip 

select of the device.  

3. Use a suitable control signal, i.e. IORD and /or IOWR to carry out device 

operations, i.e. connect IORD to RD input of the device if it is an input devise, otherwise connect 

IOWR to WR input of the device. In some cases the RD or WR control signals are combined with the 

device address pulse to generate the device select pulse. 

 

 



 
 

I/O Interfacing Techniques  
Input/output devices can be interfaced with microprocessor systems in two ways:  

1. I/O mapped I/O  

2. Memory mapped I/O  

 

1. I/O mapped I/O:  
8086 has special instructions IN and OUT to transfer data through the input/output ports in  

I/O mapped I/O system. The IN instruction copies data from a port to the Accumulator. If an  

8-bit port is read data will go to AL and if 16-bit port is read the data will go to AX. The OUT 

instruction copies a byte from AL or a word from AX to the specified port. The M/IO signal is always 

low when 8086 is executing these instructions. In this address of I/O device is 8-bit or 16-bit. It is 8-

bit for Direct addressing and 16-bit for Indirect addressing.  

2. Memory mapped I/O  
In this type of I/O interfacing, the 8086 uses 20 address lines to identify an I/O device. The I/O device 

is connected as if it is a memory device. The 8086 uses same control signals and instructions to access 

I/O as those of memory, here RD and WR signals are activated indicating memory bus cycle. 

Parallel Communication Interface: 8255 Programmable Peripheral Interface and Interfacing  
The 8255 is a widely used, programmable parallel I/O device. It can be programmed to transfer data 

under data under various conditions, from simple I/O to interrupt I/O. It is flexible, versatile and 

economical (when multiple I/O ports are required). It is an important  

general purpose I/O device that can be used with almost any microprocessor.  

The 8255 has 24 I/O pins that can be grouped primarily into two 8 bit parallel ports: A and B, with the 

remaining 8 bits as Port C. The 8 bits of port C can be used as individual bits or be grouped into two 4 

bit ports: CUpper (CU) and CLower (CL). The functions of these ports are defined by writing a control 

word in the control register.  

8255 can be used in two modes: Bit set/Reset (BSR) mode and I/O mode. The BSR mode is used to 

set or reset the bits in port C. The I/O mode is further divided into 3 modes: mode 0, mode 1 and mode 

2. In mode 0, all ports function as simple I/O ports.  



Mode 1 is a handshake mode whereby Port A and/or Port B use bits from Port C as handshake signals. 

In the handshake mode, two types of I/O data transfer can be implemented: status check and interrupt. 

In mode 2, Port A can be set up for bidirectional data transfer using handshake signals from Port C, 

and Port B can be set up either in mode 0 or mode 1.  

 

 
 

RD: (Read): This signal enables the Read operation. When the signal is low, microprocessor reads 

data from a selected I/O port of 8255.  

WR: (Write): This control signal enables the write operation.  

RESET (Reset): It clears the control registers and sets all ports in input mode. CS,A0, A1: These are 

device select signals. is connected to a decoded address and A0, A1 are connected to A0, A1 of 

microprocessor. 

 

Block diagram of 8255 
 



 
I/O Modes of 8255  

Mode 0: Simple Input or Output  
In this mode, Port A and Port B are used as two simple 8-bit I/O ports and Port C as two4- bit I/O 

ports. Each port (or half-port, in case of Port C) can be programmed to function as simply an input 

port or an output port. The input/output features in mode 0 are: Outputs are latched, Inputs are not 

latched. Ports do not have handshake or interrupt capability.  

Mode 1: Input or Output with handshake  
In mode 1, handshake signals are exchanged between the microprocessor and peripherals prior to 

data transfer. The ports (A and B) function as 8-bit I/O ports. They can be configured either as input 

or output ports. Each port (Port A and Port B) uses 3 lines from port C as handshake signals. The 

remaining two lines of port C can be used for simple I/O functions. Input and output data are latched 

and Interrupt logic is supported.  

 
 

STB Strobe Input): This signal (active low) is generated by a peripheral device that it has 

transmitted a byte of data. The 8255, in response to, generates IBF and INTR.  

IBF (Input buffer full): This signal is an acknowledgement by the 8255 to indicate that the input 

latch has received the data byte. This is reset when the microprocessor reads the data. INTR 

(Interrupt Request): This is an output signal that may be used to interrupt the microprocessor. This 

signal is generated if , IBF and INTE are all at logic 1.  

INTE (Interrupt Enable): This is an internal flip-flop to a port and needs to be set to generate the 

INTR signal. The two flip-flops INTEA and INTEB are set /reset using the BSR mode. The INTEA is 

enabled or disabled through PC4, and INTEB is enabled or disabled through PC2. 



 

 
 

(Output Buffer Full): This is an output signal that goes low when the microprocessor writes data 

into the output latch of the 8255. This signal indicates to an output peripheral that new data is ready 

to be read. It goes high again after the 8255 receives a signal from the peripheral.  

(Acknowledge): This is an input signal from a peripheral that must output a low when the peripheral 

receives the data from the 8255 ports. 

 

INTR (Interrupt Request): This is an output signal, and it is set by the rising edge of the signal. 

This signal can be used to interrupt the microprocessor to request the next data byte for output. The 

INTR is set and INTE are all one and reset by the rising edge of . .  

INTE (Interrupt Enable): This is an internal flip-flop to a port and needs to be set to generate the 

INTR signal. The two flip-flops INTEA and INTEB are set /reset using the BSR mode. The INTEA 

signal can be enabled or disabled through PC6, and INTEB is enabled or disabled through PC2.  


Mode 2: Bidirectional Data Transfer  
OBF This mode is used primarily in applications such as data transfer between the two computers or 

floppy disk controller interface. Port A can be configured as the bidirectional port and Port B either 

in mode 0 or mode 1. Port A uses five signals from Port C as handshake signals for data transfer. The 

remaining three lines from Port C can be used  

either as simple I/O or as handshake signals for Port B. 

 

Serial Communication: Using 8251  

 

8251 is a Universal Synchronous and Asynchronous Receiver and Transmitter  

compatible with Intel‘s processors. This chip converts the parallel data into a serial stream of bits 

suitable for serial transmission. It is also able to receive a serial stream of bits and convert it into 

parallel data bytes to be read by a microprocessor.  

Basic Modes of data transmission  
a) Simplex  

b) Duplex  

c) Half Duplex  

a) Simplex mode  
Data is transmitted only in one direction over a single communication channel. For example, the 

processor may transmit data for a CRT display unit in this mode.  



b) Duplex Mode  
In duplex mode, data may be transferred between two transceivers in both directions simultaneously.  

c) Half Duplex mode  
In this mode, data transmission may take place in either direction, but at a time data may be transmitted 

only in one direction. A computer may communicate with a terminal in this mode. It is not possible to 

transmit data from the computer to the terminal and terminal to computer simultaneously. 

 

 
 

 

Serial communication interface 8251 

 

The data buffer interfaces the internal bus of the circuit with the system bus. The read / write control 

logic controls the operation of the peripheral depending upon the operations initiated by the CPU 

decides whether the address on internal data bus is control address / data address. The modem control 

unit handles the modem handshake signals to coordinate the communication between modem and 

USART.  

The transmit control unit transmits the data byte received by the data buffer from the CPU for serial 

communication. The transmission rate is controlled by the input frequency. Transmit control unit also 

derives two transmitter status signals namely TXRDY and TXEMPTY which may be used by the 

CPU for handshaking.  

The transmit buffer is a parallel to serial converter that receives a parallel byte for conversion into a 

serial signal for further transmission. The receive control unit decides the receiver frequency as 

controlled by the RXC input frequency. The receive control unit generates a receiver ready (RXRDY) 

signal that may be used by the CPU for handshaking. This unit also detects a break in the data string 

while the 8251 is in asynchronous mode. In synchronous mode, the 8251 detects SYNC characters 

using SYNDET/BD pin. 

 

 



Signal Description of 8251  

 

D0 – D7: This is an 8-bit data bus used to read or write status, command word or data from  

or to the 8251A.  

C / D: (Control Word/Data): This input pin, together with RD and WR inputs, informs the  

8251A that the word on the data bus is either a data or control word/status information. If this pin is 

1, control / status is on the bus, otherwise data is on the bus.  

RD: This active-low input to 8251A is used to inform it that the CPU is reading either data or status 

information from its internal registers. This active-low input to 8251A is used to inform it that the CPU 

is writing data or control word to 8251A 

WR: This is an active-low chip select input of 825lA. If it is high, no read or write operation can be 

carried out on 8251. The data bus is tristated if this pin is high.  

CLK: This input is used to generate internal device timings and is normally connected to clock 

generator output. This input frequency should be at least 30 times greater than the receiver or 

transmitter data bit transfer rate.  

RESET: A high on this input forces the 8251A into an idle state. The device will remain idle till this 

input signal again goes low and a new set of control word is written into it. The minimum required 

reset pulse width is 6 clock states, for the proper reset operation.  

TXC (Transmitter Clock Input): This transmitter clock input controls the rate at which the 

character is to be transmitted. The serial data is shifted out on the successive negative edge of the 

TXC.  

TXD (Transmitted Data Output): This output pin carries serial stream of the transmitted data bits 

along with other information like start bit, stop bits and parity bit, etc.  

RXC (Receiver Clock Input): This receiver clock input pin controls the rate at which the character 

is to be received.  

RXD (Receive Data Input): This input pin of 8251A receives a composite stream of the data to be 

received by 8251 A.  

RXRDY (Receiver Ready Output): This output indicates that the 8251A contains a character to be 

read by the CPU.  

TXRDY - Transmitter Ready: This output signal indicates to the CPU that the internal circuit of 

the transmitter is ready to accept a new character for transmission from the CPU. DSR - Data Set 

Ready: This is normally used to check if data set is ready when communicating with a modem.  

DTR - Data Terminal Ready: This is used to indicate that the device is ready to accept data when 

the 8251 is communicating with a modem.  

RTS - Request to Send Data: This signal is used to communicate with a modem.  

TXE- Transmitter Empty: The TXE signal can be used to indicate the end of a transmission mode. 

 

Operating Modes of 8251  
1. Asynchronous mode  

2. Synchronous mode  

Asynchronous Mode (Transmission)  
When a data character is sent to 8251A by the CPU, it adds start bits prior to the serial data bits, 

followed by optional parity bit and stop bits using the asynchronous mode instruction control word 

format. This sequence is then transmitted using TXD output pin on the falling edge of TXC.  

Asynchronous Mode (Receive)  
A falling edge on RXD input line marks a start bit. The receiver requires only one stop bit to mark 

end of the data bit string, regardless of the stop bit programmed at the transmitting end. The 8-bit 

character is then loaded into the into parallel I/O buffer of 8251.  



RXRDY pin is raised high to indicate to the CPU that a character is ready for it. If the previous 

character has not been read by the CPU, the new character replaces it, and the overrun flag is set 

indicating that the previous character is lost. 

 

 
Synchronous Mode (Transmission)  
 

The TXD output is high until the CPU sends a character to 8251 which usually is a SYNC character. 

When CTS line goes low, the first character is serially transmitted out. Characters are shifted out on 

the falling edge of TXC .Data is shifted out at the same rate as TXC , over TXD output line. If the CPU 

buffer becomes empty, the SYNC character or characters are inserted in the data stream over TXD 

output.  

 

Synchronous Mode (Receiver)  

 

In this mode, the character synchronization can be achieved internally or externally. The data on RXD 

pin is sampled on rising edge of the RXC. The content of the receiver buffer is compared with the first 

SYNC character at every edge until it matches. If 8251 is programmed for two SYNC characters, the 

subsequent received character is also checked. When the characters match, the hunting stops. The 

SYNDET pin set high and is reset automatically by a status read operation. In the external SYNC 

mode, the synchronization is achieved by applying a high level on the SYNDET input pin that forces 

8251 out of HUNT mode. The high level can be removed after one RXC cycle. The parity and overrun 

error both are checked in the same way as in asynchronous mode. 



 
 

Command Instruction Definition 

 

The command instruction controls the actual operations of the selected format like enable 

transmit/receive, error reset and modem control. A reset operation returns 8251 back to mode 

instruction format. 

 

 
 

 

 

 

D/A And A/D Interface: 

 

The function of an A/D converter is to produce a digital word which represents the magnitude of some 

analog voltage or current. 

The resolution of an A/D converter refers to the number of bits in the output binary word. An 8-bit 

converter for example has a resolution of 1 part in 256. Accuracy and linearity specifications have the 

same meaning for an A/D converter as they do for a D/A converter. Another important specification 

for an ADC is its conversion time. - the time it takes the converter to produce a valid output binary 

code for an applied input voltage. When we refer to a converter as high speed, it has a short conversion 

time. 



The analog to digital converter is treated as an input device by the microprocessor that sends 

an initialising signal to the ADC to start the analog to digital data conversation process. The start of 

conversion signal is a pulse of a specific duration. The process of analog to digital conversion is a slow 

process, and the microprocessor has to wait for the digital data till the conversion is over. 

 

After the conversion is over, the ADC sends end of conversion (EOC) signal to inform the 

microprocessor that the conversion is over and the result is ready at the output buffer of the ADC. 

These tasks of issuing an SOC pulse to ADC, reading EOC signal from the ADC and reading the digital 

output of the ADC are carried out by the CPU using 8255 I/O ports. The time taken by the ADC from 

the active edge of SOC pulse (the edge at which the conversion process actually starts) till the active 

edge of EOC signal is called as the conversion delay of the ADC- the time taken by the converter to 

calculate the equivalent digital data output from the instant of the start of conversion is called 

conversion delay. It may range anywhere from a few microseconds in case of fast ADCs to even a few 

hundred milliseconds in case of slow ADCs. A number of ADCs are available in the market, the 

selection of ADC for a particular application is done, keeping in mind the required speed, resolution 

range of operation, power supply requirements, sample and hold device requirements and the cost 

factors are considered.  

The available ADCs in the market use different conversion techniques for the conversion of analog 

signals to digital signals.  Parallel converter or flash converter, Successive approximation and  

 

dual slope integration  

A general algorithm for ADC interfacing contains the following steps.  

1. Ensure the stability of analog input, applied to the ADC.  

2. Issue start of conversion (SOC) pulse to ADC.  

3. Read end of conversion (EOC) signal to mark the end of conversion process.  

4. Read digital data output of the ADC as equivalent digital output.  

It may be noted that analog input voltage must be constant at the input of the ADC right from the 

start of conversion till the end of conversion to get correct results. This may be ensured by a sample 

and hold  circuit which samples the analog signal and holds it constant for a specified time duration.  

The microprocessor may issue a hold signal to the sample and Hold circuit. If the  

applied input changes before the complete conversion process is over, the digital equivalent of the 

analog input calculated by the ADC may not be correct. If the applied input changes before the 

complete conversion process is over, the digital equivalent of the analog input calculated by the ADC 

may not be correct.  

 

 ADC 0808/0809 

 

The analog to digital converter chips 0808 and 0809 are 8-bit CMOS, successive  

approximation converters. Successive approximation technique is one of the fast techniques for 

analog to digital conversion. The conversion delay is 100 μs at a clock frequency of 640 kHz, which 

is quite low as  compared to other converters.  These converters do not need any external zero or full 

scale adjustments as they are already taken care of by internal circuits. These converters internally 

have a 3:8 analog multiplexer so that at a time eight different analog inputs can be connected to the 

chips. Out of these eight inputs only one can be selected for conversion by using address lines ADD 

A, ADD B and ADD C, as shown. Using these address inputs, multichannel data acquisition systems 

can be designed using a single ADC.  The CPU may drive these lines using output port lines in case 

of multichannel  applications. In case of single input applications, these may be hard wired to select 

the proper input.  



 

 
INTERFACING DIGITAL TO ANALOG ONVERTERS:  
The digital to analog converters convert binary numbers into their analog equivalent voltages or 

currents. Several techniques are employed for digital to analog conversion.  

Weighted resistor network  

 R-2R ladder network  

Current output D/A converter  

Applications in areas like digitally controlled gains, motor speed control, programmable gain 

amplifiers, digital voltmeters, panel meters, etc.  In a compact disk audio player for example a 14-

or16-bit D/A converter is used to convert the binary data read off the disk by a laser to an analog 

audio signal.Most speech synthesizer integrated circuits contain a D/A converter to convert 

stored binary data words into analog audio signals. 


Characteristics: 



1. Resolution: It is a change in analog output for one LSB change in digital  

input.  

It is given by(1/2n )*Vref.  

If n=8 (i.e.8-bit DAC) 1/256*5V=39.06mV  

2. Settling time: It is the time required for the DAC to settle for a full scale code  

change. 

 

 

 

 

 



Programmable timer device 8253  

 

Intel‘s programmable counter/timer device (8253) facilitates the generation of  accurate time delays. 

When 8253 is used as timing and delay generation peripheral, the microprocessor becomes free from 

the  tasks related to the counting process and execute the programs in memory, while the timer 

device may perform the counting tasks. This minimizes the software overhead on the  

microprocessor. 

  

Architecture and Signal Descriptions  

 

The programmable timer device 8253 contains three independent 16-bit counters, each with a 

maximum count rate of 2.6 MHz to generate three totally independent delays or maintain three 

independent counters simultaneously. All the three counters may be independently controlled by 

programming the three internal command word registers.  

 

The 8-bit, bidirectional data buffer interfaces internal circuit of 8253 tomicroprocessor systems bus. 

Data is transmitted or received by the buffer upon the execution of IN or OUT instruction. The 

read/write logic controls the direction of the data buffer depending upon whether it is a read or a write 

operation. It may be noted that IN instruction reads data while OUT instruction writes data to a 

peripheral 

 

 
 

 

 

 



 
The three counters all 16-bit presettable, down counters, able to operate either inBCD or in 

hexadecimal mode. The mode control word register contains the information that can be used for 

writing or reading the count value into or from the respective count register using the OUT and IN 

instructions. The specialty of the 8253 counters is that they can be easily read on line without disturbing 

the clock input to the counter. This facility is called as "on the fly" reading of counters, and is invoked 

using a mode control word. 

 

 

 
A0, Al pins are the address input pins and are required internally for addressing themode control 

word registers and the three counter registers. A low on CS line enables the 8253. No operation will 

be performed by 8253 till it is enabled. 

 



A control word register accepts the 8-bit control word written by the microprocessor and stores it for 

controlling the complete operation of the specific counter. It may be noted that, the control word 

register can only be written and cannot be read as it is obvious from Table  

The CLK, GATE and OUT pins are available for each of the three timer channels. Their functions 

will be clear when we study the different operating modes of 8253.  


Control Word Register  
The 8253 can operate in anyone of the six different modes. A control word must be written in the 

respective control word register by the microprocessor to initialize each of the counters of 8253 to 

decide its operating mode. All the counters can operate in anyone of the modes or they may be even 

in different modes of operation, at a time.  

The control word format is presented, along with the definition of each bit, while writing a count in 

the counter, it should be noted that, the count is written in the counter only after the data is put on the 

data bus and a falling edge appears at the clock pin of the peripheral thereafter. Any reading 

operation of the counter, before the falling edge appears may result in garbage data.  
 
8279 Programmable Keyboard/Display Controller  

 

Intel‘s 8279 is a general purpose Keyboard Display controller that simultaneously drives the display 

of a system and interfaces a Keyboard with the CPU. The Keyboard Display interface scans the 

Keyboard to identify if any key has been pressed and sends the code of the pressed key to the CPU. It 

also transmits the data received from the CPU, to the display device.  Both of these functions are 

performed by the controller in repetitive fashion without involving the CPU. The Keyboard is 

interfaced either in the interrupt or the polled mode. In the interrupt mode, the processor is requested 

service only if any key is pressed, otherwise the CPU can proceed with its main task.   

 

In the polled mode, the CPU periodically reads an internal flag of 8279 to check for a key pressure. 

The Keyboard section can interface an array of a maximum of 64 keys with the CPU. The Keyboard 

entries (key codes) are debounced and stored in an 8-byte FIFO RAM, that is further accessed by the 

CPU to read the key codes. If more than eight characters are entered in the FIFO (i.e. more that eight 

keys are pressed), before any FIFO read operation, the overrun status is set. If a FIFO contains a 

valid key entry, the CPU is interrupted (in interrupt mode) or the CPU checks the status (in polling) 

to read the entry. Once the CPU reads a key entry, the FIFO is updated, i.e. the key entry is pushed 

out of the FIFO to generate space for new entries. The 8279 normally provides a maximum of sixteen  

7-seg display interface with CPU It contains a 16-byte display RAM that can be used either as an 

integrated block of 16x8-bits or two 16x4-bit block of RAM. The data entry to RAM block is 

controlled by CPU using the command words of the 8279.  


Architecture and Signal Descriptions of 8279 

The Keyboard display controller chip 8279 provides 

1. A set of four scan lines and eight return lines for interfacing keyboards.  

2. A set of eight output lines for interfacing display.  

 

 

I/O Control and Data Buffer  
The I/O control section controls the flow of data to/from the 8279. The data buffer interface the external 

bus of the system with internal bus of 8279 the I/O section is enabled only if D The pin Ao, RD and 

WR select the command, status or data read/write operations carried out by the CPU with 8279. 

 



 

 
Control and Timing Register and Timing Control  
These registers store the keyboard and display modes and other operating conditions programmed by 

CPU. The registers are written with Ao=1 and WR =0. The timing and control unit controls the basic 

timings for the operation of the circuit. Scan Counter divide down the operating frequency of 8279 to 

derive scan keyboard and scan display frequencies.  

Scan Counter  
The Scan Counter has two modes to scan the key matrix and refresh the display. In the Encoded 

mode, the counter provides a binary count that is to be externally decoded to provide the scan lines 

for keyboard and display (four externally decoded scan lines may drive up to 16 displays). In the 

decoded scan mode, the counter internally decodes the least significant 2 bits and provides a decoded 

1 out of 4 scan on SL0-SL3 (four internally  

decoded scan lines may drive up to 4 Displays). The Keyboard and Display both are in the same 

mode at a time.  

Return Buffers and Keyboard Debounce and Control  
This section scans for a Key closure row-wise. If it is detected, the Keyboard debounce unit 

debounces the key entry (i.e. wait for 10 ms). After the debounce period, if the key continues to be 

detected. The code of the Key is directly transferred to the sensor RAM along with SHIFT and 

CONTROL key status.  

FIFO/Sensor RAM and Status Logic  
In Keyboard or strobed input mode, this block acts as 8-byte first-in-first-out (FIFO) RAM. Each key 

code of the pressed key is entered in the order of the entry, and in the meantime, read by the CPU, till 

the RAM becomes empty. The status logic generates an interrupt request after each FIFO read 

operation till the FIFO is empty.  



In scanned sensor matrix mode, this unit acts as sensor RAM. Each row of the sensor RAM is loaded 

with the status of the corresponding row of sensors in the matrix. If a sensor changes its state, the IRQ 

line goes high to interrupt the CPU. 

Display Address Registers and Display RAM.  
The Display address registers hold the addresses of the word currently being written or read by the 

CPU to or from the display RAM. The contents of the registers are automatically updated by 8279 to 

accept the next data entry by CPU. The 16-byte display RAM contains the 16-byte of data to be 

displayed on the sixteen 7-seg displays in the encoded scan mode 

 

Pin Diagram of 8279 

 
DB0 - DB7:  
These are bidirectional data bus lines. The data and command words to and from the CPU  

are transferred on these lines.  

CLK:  
This is a clock input used to generate internal timings required by 8279. 

RESET:  
This pin is used to reset 8279. A high on this line resets 8279. After resetting 8279, its in sixteen 8-bit 

display, left entry encoded scan, 2-key lock out mode. The clock prescaler is set to 31.  

CS chip select:  
A low on this line enables 8279 for normal read or write operations. Otherwise this pin should be 

high.  

Ao:  
A high on the Ao line indicates the transfer of a command or status information. A low on this line 

indicates the transfer of data. This is used to select one of the internal registers of 8279. 

RD, WR:  
(Input/Output) READ/WRITE input pins enable the data buffer to receive or send data over the data 

bus.  

IRQ:  
This interrupt output line goes high when there is data in the FIFO sensor RAM. The interrupt line 

goes low with each FIFO RAM read operation. However, if the FIFO RAM further contains any 

Key-code entry to be read by the CPU, this pin again goes high to generate an interrupt to the CPU.  

 



Vss, Vcc:  
These are the ground and power supply lines for the circuit.  

SL0-SL3 – Scan Lines:  
These lines are used to scan the keyboard matrix and display digits. These lines can be programmed 

as encoded or decoded, using the mode control register.  

RL0-RL7 – Return Lines:  
These are the input lines which are connected to one terminal of keys, while the other terminal of the 

keys are connected to the decoded scan lines. These are normally high, but pulled low when a key is 

pressed.  

SHIFT:  
The status of the Shift input line is stored along with each key code in FIFO in the scanned keyboard 

mode. Till it is pulled low with a key closure it is pulled up internally to keep it high.  

CNTL/STB-CONTROL/STROBED I/P Mode:  

In the Keyboard mode, this line is used as a control input and stored in FIFO on a key closure. The 

line is a strobe line that enters the data into FIFO RAM, in the strobed input mode. It has an internal 

pull up. The line is pulled down with a Key closure.  

BD – Blank Display:  
This output pin is used to blank the display during digit switching or by a blanking command.  

OUTA0 – OUTA3 and OUTB0 – OUTB3:  
These are the output ports for two 16x4 (or one 16 x 8) internal display refresh registers. The data 

from these lines is synchronized with the scan lines to scan the display and keyboard. The two 4-bit 

ports may also be used as one 8-bit port.  

Modes of Operation of 8279  
The Modes of operation of 8279 are  

i. Input (Keyboard) modes ii. Output (Display) modes Input (Keyboard) modes:  

8279 provides three input modes, they are:  

1. Scanned Keyboard Mode:  
This mode allows a key matrix to be interfaced using either encoded or decoded scans. In the 

encoded scan, an 8 x 8 keyboard or in decoded scan , a 4 x 8 Keyboard can be interfaced. The code 

of key pressed with SHIFT and CONTROL status is stored into the FIFO RAM.  

2. Scanned Sensor Matrix:  
In this mode, a sensor array can be interfaced with 8279 using either encoder or decoder scans. With 

encoder scan 8 x 8 sensor matrix or with decoder scan 4 x 8 sensor matrix can be interfaced. The 

sensor codes are stored in the CPU addressable sensor RAM.  

3. Strobed Input: In this mode, if the control line goes low, the data on return lines, is stored in the 

FIFO byte by byte.  

Output (Display) Modes:  
8279 provides two output modes for selecting the display options.  

1. Display Scan:  
In this mode, 8279 provides 8 or 16 character multiplexed displays those can be organized as dual 4-

bit or single 8-bit display units.  

2. Display Entry:  
The Display data is entered for display either from the right side or from the left side.  

 

 

 

 

 

 



Details of Modes of Operation  

Keyboard Modes  

1. Scanned Keyboard Mode with 2 Key Lockout  
In this mode of operation, when a key is pressed, a debounce logic comes into operation. The Key 

code of the identified key is entered into the FIFO with SHIFT and CNTL status, provided the FIFO 

is not full.  

2. Scanned Keyboard with N-key Rollover  
In this mode, each key depression is treated independently. When a key is pressed, the debounce 

circuit waits for 2 keyboard scans and then checks whether the key is still depressed. If it is still 

depressed, the code is entered in FIFO RAM. Any number of keys can be pressed simultaneously and 

recognized in the order, the Keyboard scan record them.  

3. Scanned Keyboard Special Error Mode  
This mode is valid only under the N-Key rollover mode. This mode is programmed using end 

interrupt/error mode set command. If during a single debounce period (two Keyboard scan) two keys 

are found pressed, this is considered a simultaneous depression and an error  

flag is set. This flag, if set, prevents further writing in FIFO but allows generation of further 

interrupts to the CPU for FIFO read.  

3. Sensor Matrix Mode  
In the Sensor Matrix mode, the debounce logic is inhibited the 8-byte memory matrix. The status of 

the sensor switch matrix is fed directly to sensor RAM matrix Thus the sensor RAM bits contains the 

row-wise and column-wise status of the sensors in the sensor matrix.  

Display Modes  
There are various options of data display The first one is known as left entry mode or type writer 

mode. Since in a type writer the first character typed appears at the left-most position, while the 

subsequent characters appears successively to the right of the first one. The other display format is 

known as right entry mode, or calculator mode, since the calculator the first character entered appears 

to the right-most position and this character is shifted one position left when the next character is 

entered.  

1. Left Entry Mode  
In the Left entry mode, the data is entered from the left side of the display unit. Address 0 of the 

display RAM contains the leftmost display character and address 15 of the RAM contains the 

rightmost display character.  

2. Right Entry Mode  
In the right entry mode, the first entry to be displayed is entered on the rightmost display. The next 

entry is also placed in the right most display but after the previous display is shifted left by one 

display position.  


Command Words of 8279  

 

All the Command words or status words are written or read with Ao = 1 and CS = 0 to or from 8279.  

a. Keyboard Display mode set 

The format of the command word to select different modes of operation of 8279 is given below with 

its bit definitions.  

b. Programmable Clock  
The clock for operation of 8279 is obtained by dividing the external clock input signal by a 

programmable constant called prescaler.  

PPPPP is a 5-bit binary constant. The input frequency is divided by a decimal constant ranging from 

2 to 31, decided by the bits of an internal prescalar, PPPPP.  

 



c. Read FIFO/Sensor RAM  
The format of this command is given as shown below X - don‘t care  

AI - Auto increment flag  

AAA - Address pointer to 8 bit FIFO RAM  

This word is written to set up 8279 for reading FIFO/Sensor RAM. In scanned keyboard mode, AI 

and AAA bits are of no use. The 8279 will automatically drive data bus for each subsequent read, in 

the same sequence, in which the data was entered.  

d. Read Display RAM  
This command enables a programmer to read the display RAM data The CPU writes this command 

word to 8279 to prepare it for display RAM read operation. AI is auto incremented flag and AAAA, 

the 4-bit address, points to the 16-byte display RAM that is to be read. If AI = 1, the address will be 

automatically, incremented after each read or write to the display RAM.  

e. Write Display RAM  

The format of this command is given as shown below  

AI - Auto increment flag  

AAAA - 4-bit address for 16-bit display RAM to be written  

Other details of this command are similar to the ‗Read Display RAM  

Command. 

 f. Display Write Inhibit/Blanking  
The IW (Inhibit write flag) bits are used to mask the individual nibble Here Do and D2 corresponds 

to OUTBo – OUTB3 while D1 and D3 corresponds to OUTAo-OUTA3 for blanking and masking 

respectively.  

g. Clear Display RAM  
The CD2, CD1, CDo is a selectable blanking code to clear all the rows of the display RAM  

as given below. The characters A and B represents the output nibbles. CD CD1 CDo  

1 0 x All Zeros (x don‘t care) AB = 00  

1 1 0 A3-Ao = 2(0010) and B3-Bo = 00(0000) 1  

1 1 All ones (AB = FF), i.e. clear RAM  

Here, CA represents clear All and CF represents Clear FIFO RAM  

End Interrupt/Error Mode Set  
For the sensor matrix mode, this command lowers the IRQ line and enables further writing into the 

RAM. Otherwise, if a charge in sensor value is detected, IRQ goes high that inhibits writing in the 

sensor RAM.  

Key-code and status Data Formats  
This briefly describes the formats of the Key-code/Sensor data in their respective modes of operation 

and the FIFO Status Word formats of 8279.  

Key-code Data Formats:  
a. After a valid Key closure, the key code is entered as a byte code into the FIFO RAM, in the 

following format, in scanned keyboard mode. The Keycode format contains 3-bit contents of 

the internal row counter, 3-bit contents of the column counter and status of the SHIFT 
b. and CNTL Keys The data format of the Keycode in scanned keyboard mode is given below. 

In the sensor matrix mode, the data from the return lines is directly entered into an 

appropriate row of sensor RAM, that identifies the row of the sensor that changes its status. 

The SHIFT and CNTL Keys are ignored in this mode. RL bits represent the return lines.  

c. Rn represents the sensor RAM row number that is equal to the row number of the sensor 

array in which the status change was detected. Data Format of the sensor code in sensor 

matrix mode  

 



d. FIFO Status Word: The FIFO status word is used in keyboard and strobed input mode to 

indicate the error. Overrun error occurs, when an already full FIFO is attempted an entry, 

Under run error occurs when an empty FIFO read is attempted. FIFO status word also has a 

bit to show the unavailability of FIFO RAM because of the ongoing clearing operation.  

 

e. In sensor matrix mode, a bit is reserved to show that at least one sensor closure indication is 

stored in the RAM, The S/E bit shows the simultaneous multiple closure error in special error 

mode. In sensor matrix mode, a bit is reserved to show that at least one sensor closure indication 

is stored in the RAM, The S/E bit shows the simultaneous multiple closure error in special 

error mode. 
 

Interrupt Controller 

 

The Intel 8259A Programmable Interrupt Controller handles up to eight vectored priority interrupts 

for the CPU. It is cascadable for up to 64 vectored priority interrupts without additional circuitry. It is 

packaged in a 28-pin DIP, uses NMOS technology and requires a single a5V supply. Circuitry is 

static, requiring no clock input.  The 8259A is designed to minimize the software and real time 

overhead in handling multi- level priority interrupts.  

 

It has several modes, permitting optimization for a variety of system requirements. The  

8259A is fully upward compatible with the Intel 8259. Software originally written for the  

8259 will operate the 8259A in all 8259 equivalent modes (MCS-80/85, Non-Buffered and  

Edge Triggered). 

 

 
 
 

 



The microprocessor will be executing its main program and only stop to service peripheral devices 

when it is told to do so by the device itself. In effect, the method would provide an external 

asynchronous input that would inform the processor that it should complete whatever instruction that 

is currently being executed and fetch a new routine that will service the requesting device. Once this 

servicing is complete, however, the processor would resume exactly where it left off.This method is 

called Interrupt.  

 

System throughput would drastically increase, and thus more tasks could be assumed by the 

microcomputer to further enhance its cost effectiveness. The Programmable Interrupt Controller 

(PIC) functions as an overall manager in an Interrupt-Driven system environment. It accepts requests 

from the peripheral equipment, determines which of the incoming requests is of the highest 

importance (priority), artains whether the incoming request has a higher priority value than the level 

currently being serviced, and issues an interrupt to the CPU based on this determination.  

Each peripheral device or structure usually has a special program or ``routine'' that is associated with 

its specific functional or operational requirements; this is referred to as a  

``service routine''. The PIC, after issuing an Interrupt to the CPU, must somehow input information 

into the CPU that can ̀ `point'' the Program Counter to the service routine associated with the requesting 

device. This ``pointer'' is an address in a vectoring table and will often be referred to, in this document, 

as vectoring data. 

 

Interrupt request register (IRR) AND in-service register (ISR):  

 

The interrupts at the IR input lines are handled by two registers in cascade, the Interrupt Request 

Register (IRR) and the In-Service (ISR). The IRR is used to store all the interrupt levels which are 

requesting service; and the ISR is used to store all the interrupt levels which are being serviced.  

Priority resolver  

This logic block determines the priorites of the bits set in the IRR. The highest priority is selected 

and strobed into the corresponding bit of the ISR during INTA pulse.  

Interrupt mask register (IMR)  

The IMR stores the bits which mask the interrupt lines to be masked. The IMR operates on the 

IRR.Masking of a higher priority input will not affect the interrupt request lines of lower quality.  

INT (INTERRUPT)  

This output goes directly to the CPU interrupt input. The VOH level on this line is designed to be 

fully compatible with the 8080A, 8085A and 8086 input levels.  

INTA (INTERRUPT ACKNOWLEDGE)  

INTA pulses will cause the 8259A to release vectoring information onto the data bus. The format of 

this data depends on the system mode (mPM) of the 8259A 

Data bus buffer  

This 3-state, bidirectional 8-bit buffer is used to interface the 8259A to the system Data Bus. Control 

words and status information are transferred through the Data Bus Buffer.  

Read/write control logic  

The function of this block is to accept OUTput commands from the CPU. It contains the Initialization 

Command Word (ICW) registers and Operation Command Word (OCW) registers  

which store the various control formats for device operation. This function block also allows the 

status of the 8259A to be transferred onto the Data Bus.  

CS (CHIP SELECT)  

A LOW on this input enables the 8259A. No reading or writing of the chip will occur unless the 

device is selected.  





WR (WRITE)  

A LOW on this input enables the CPU to write control words (ICWs and OCWs) to the  

8259A.  

RD (READ)  

A LOW on this input enables the 8259A to send the status of the Interrupt Request Register (IRR),In 

Service Register (ISR), the Interrupt Mask Register (IMR), or the Interrupt level onto the Data Bus.  

A0  

This input signal is used in conjunction with WR and RD signals to write commands into the various 

command registers, as well as reading the various status registers of the chip. This line can be directly 

to one of the address lines. 

 

DMA Controller -DMA Controller 8257 

 

The Direct Memory Access or DMA mode of data transfer is the fastest amongst all the modes of 

data transfer. In this mode, the device may transfer data directly to/from memory without any 

interference from the CPU. The device requests the CPU (through a DMA controller) to hold its data, 

address and control bus, so that the device may transfer data directly to/from memory.  

The DMA data transfer is initiated only after receiving HLDA signal from the CPU.  

Intel‘s 8257 is a four channel DMA controller designed to be interfaced with their family of  

microprocessors. The 8257, on behalf of the devices, requests the CPU for bus access using local bus 

request input i.e. HOLD in minimum mode.  

 

In maximum mode of the microprocessor RQ/GT pin is used as bus request input. On receiving the 

HLDA signal (in minimum mode) or RQ/GT signal (in maximum mode) from the CPU, the requesting 

devices gets the access of the bus, and it completes the required number of DMA cycles for the data 

transfer and then hands over the control of the bus back to the CPU. 

 

Internal Architecture of 8257 
 
The internal architecture of 8257 is shown in figure. The chip support four DMA channels, i.e. four 

peripheral devices can independently request for DMA data transfer through these channels at a time. 

The DMA controller has 8-bit internal data buffer, a read/write unit, a control unit, a priority 

resolving unit along with a set of registers. The 8257 performs the DMA operation over four 

independent DMA channels. Each of four channels of 8257 has a pair of two 16-bit registers, viz. 

DMA address register and terminal count register.  

 

There are two common registers for all the channels, namely, mode set register and status register. 

Thus there are a total of ten registers. The CPU selects one of these ten registers using address lines 

Ao-A3. Table shows how the Ao-A3 bits may be used for selecting one of these registers.  



 
DMA Address Register  
Each DMA channel has one DMA address register. The function of this register is to store the 

address of the starting memory location, which will be accessed by the DMA channel. Thus the 

starting address of the memory block which will be accessed by the device is first loaded in the DMA 

address register of the channel. The device that wants to transfer data over a DMA channel, will 

access the block of the memory with the starting address stored in the DMA Address Register.  

Terminal Count Register  
Each of the four DMA channels of 8257 has one terminal count register (TC). This 16-bit register 

issued for artaining that the data transfer through a DMA channel ceases or stops after the required 

number of DMA cycles. The low order 14-bits of the terminal count register are initialized with the 

binary equivalent of the number of required DMA cycles minus one.  

After each DMA cycle, the terminal count register content will be decremented by one and finally it 

becomes zero after the required number of DMA cycles are over. The bits  

14 and 15 of this register indicate the type of the DMA operation (transfer). If the device wants to 

write data into the memory, the DMA operation is called DMA write operation. Bit  

14 of the register in this case will be set to one and bit 15 will be set to zero. 

 

Data Bus Buffer, Read/Write Logic, Control Unit and Priority Resolver  
The 8-bit. Tristate, bidirectional buffer interfaces the internal bus of 8257 with the external system 

bus under the control of various control signals.  

In the slave mode, the read/write logic accepts the I/O Read or I/O Write signals, decodes the Ao-A3 

lines and either writes the contents of the data bus to the addressed internal register or reads the 

contents of the selected register depending upon whether IOW or IOR signal is activated.  

In master mode, the read/write logic generates the IOR and IOW signals to control the data flow to or 

from the selected peripheral. The control logic controls the sequences of operations and generates the 

required control signals like AEN, ADSTB, MEMR, MEMW, TC and MARK along with the address 



lines A4-A7, in master mode. The priority resolver resolves the priority of the four DMA channels 

depending upon whether normal priority or rotating priority is programmed. 

 
DRQo-DRQ3:  
These are the four individual channel DMA request inputs, used by the peripheral devices for 

requesting the DMA services. The DRQo has the highest priority while DRQ3 has the lowest one, if 

the fixed priority mode is selected.  

DACKo-DACK3:  
These are the active-low DMA acknowledge output lines which inform the requesting peripheral that 

the request has been honoured and the bus is relinquished by the CPU. These lines may act as strobe 

lines for the requesting devices. 

Do-D7:  
These are bidirectional, data lines used to interface the system bus with the internal data bus of 8257. 

These lines carry command words to 8257 and status word from 8257, in slave mode, i.e. under the 

control of CPU. The data over these lines may be transferred in both the directions. When the 8257 is 

the bus master (master mode, i.e. not under CPU control), it uses Do-D7 lines to send higher byte of 

the generated address to the latch. This address is further latched using ADSTB signal. the address is 

transferred over Do-D7 during the first clock cycle of the DMA cycle. During the rest of the period, 

data is available on the data bus.  

IOR:  
This is an active-low bidirectional tristate input line that acts as an input in the slave mode. In slave 

mode, this input signal is used by the CPU to read internal registers of 8257.this line acts output in 

master mode. In master mode, this signal is used to read data from a peripheral during a memory 

write cycle.  

IOW:  
This is an active low bidirection tristate line that acts as input in slave mode to load the contents of 

the data bus to the 8-bit mode register or upper/lower byte of a 16-bit DMA address register or 

terminal count register. In the master mode, it is a control output that loads the data to a peripheral 

during DMA memory read cycle (write to peripheral).  



CLK:  
This is a clock frequency input required to derive basic system timings for the internal operation of 

8257.  

RESET:  
This active-high asynchronous input disables all the DMA channels by clearing the mode register 

and tristates all the control lines.  

Ao-A3:  
These are the four least significant address lines. In slave mode, they act as input which select one of 

the registers to be read or written. In the master mode, they are the four least significant memory 

address output lines generated by 8257.  

CS:  
This is an active-low chip select line that enables the read/write operations from/to 8257, in slave 

mode. In the master mode, it is automatically disabled to prevent he chip from getting selected (by 

CPU) while performing the DMA operation.  

A4-A7:  
This is the higher nibble of the lower byte address generated by 8257 during the master mode of 

DMA operation.  

READY:  
This is an active-high asynchronous input used to stretch memory read and write cycles of  

8257 by inserting wait states. This is used while interfacing slower peripherals. 

HRQ:  
The hold request output requests the access of the system bus. In the non-cascaded 8257 systems, this 

is connected with HOLD pin of CPU. In the cascade mode, this pin of a slave is connected with a 

DRQ input line of the master 8257, while that of the master is connected with HOLD input of the 

CPU.  

HLDA:  
The CPU drives this input to the DMA controller high, while granting the bus to the device. This pin 

is connected to the HLDA output of the CPU. This input, if high, indicates to the DMA controller that 

the bus has been granted to the requesting peripheral by the CPU. 

MEMR: This active –low memory read output is used to read data from the addressed memory 

locations during DMA read cycles.  

MEMW:  
This active-low three state output is used to write data to the addressed memory location during 

DMA write operation.  

ADST:  
This output from 8257 strobes the higher byte of the memory address generated by the  

DMA controller into the latches.  

AEN:  
This output is used to disable the system data bus and the control the bus driven by the CPU, this 

may be used to disable the system address and data bus by using the enable input of the bus drivers to 

inhibit the non-DMA devices from responding during DMA operations. If the  

8257 is I/O mapped, this should be used to disable the other I/O devices, when the DMA  

controller addresses is on the address bus.  

TC:  
Terminal count output indicates to the currently selected peripherals that the present DMA cycle is 

the last for the previously programmed data block. If the TC STOP bit in the mode set register is set, 

the selected channel will be disabled at the end of the DMA cycle. The TC pin is activated when the 

14-bit content of the terminal count register of the selected channel becomes equal to zero. The lower 



order 14 bits of the terminal count register are to be programmed with a 14-bit equivalent of (n-1), if 

n is the desired number of DMA cycles.  

MARK:  
The modulo 128 mark output indicates to the selected peripheral that the current DMA cycle is the 

128th cycle since the previous MARK output. The mark will be activated after each  

128 cycles or integral multiples of it from the beginning if the data block (the first DMA  

cycle), if the total number of the required DMA cycles (n) is completely divisible by 128.  

Vcc:  
This is a +5v supply pin required for operation of the circuit.  

GND:  
This is a return line for the supply (ground pin of the IC). 

 



UNIT-IV 

Pre - requisite:  

 To Study the Architecture of 8051 and Timer mode 

Outcomes 

 Develop systems using different microcontrollers 

 

Architecture of 8051 

The first microprocessor 4004 was invented by Intel Corporation. 8085 and 8086 microprocessors were 

also invented by Intel. In 1981, Intel introduced an 8-bit microcontroller called the 8051. It was referred 

as system on a chip because it had 128 bytes of RAM, 4K byte of on-chip ROM, two timers, one serial 

port, and 4 ports (8-bit wide), all on a single chip. When it became widely popular, Intel allowed other 

manufacturers to make and market different flavors of 8051 with its code compatible with 8051. It means 

that if you write your program for one flavor of 8051, it will run on other flavors too, regardless of the 

manufacturer. This has led to several versions with different speeds and amounts of on-chip RAM. 

 

8051 - Members 

 

8052 microcontroller − 8052 has all the standard features of the 8051 microcontroller as well as an extra 

128 bytes of RAM and an extra timer. It also has 8K bytes of on-chip program ROM instead of 4K bytes. 

 

8031 microcontroller − It is another member of the 8051 family. This chip is often referred to as a ROM-

less 8051, since it has 0K byte of on-chip ROM. You must add external ROM to it in order to use it, which 

contains the program to be fetched and executed. This program can be as large as 64K bytes. But in the 

process of adding external ROM to the 8031, it lost 2 ports out of 4 ports. To solve this problem, we can 

add an external I/O to the 8031 

 

Block Diagram of 8051 Microcontroller 

 
 



In 8051, I/O operations are done using four ports and 40 pins. The following pin diagram shows 

the details of the 40 pins. I/O operation port reserves 32 pins where each port has 8 pins. The other 

8 pins are designated as Vcc, GND, XTAL1, XTAL2, RST, EA (bar), ALE/PROG (bar), and PSEN 

(bar). 

 
 

I/O Ports and their Functions 

The four ports P0, P1, P2, and P3, each use 8 pins, making them 8-bit ports. Upon RESET, all the ports are 

configured as inputs, ready to be used as input ports. When the first 0 is written to a port, it becomes an 

output. To reconfigure it as an input, a 1 must be sent to a port. 

 

Port 0 (Pin No 32 – Pin No 39) 

It has 8 pins (32 to 39). It can be used for input or output. Unlike P1, P2, and P3 ports, we normally connect 

P0 to 10K-ohm pull-up resistors to use it as an input or output port being an open drain. 

 

It is also designated as AD0-AD7, allowing it to be used as both address and data. In case of 8031 (i.e. 

ROMless Chip), when we need to access the external ROM, then P0 will be used for both Address and Data 

Bus. ALE (Pin no 31) indicates if P0 has address or data. When ALE = 0, it provides data D0-D7, but when 

ALE = 1, it has address A0-A7. In case no external memory connection is available, P0 must be connected 

externally to a 10K-ohm pull-up resistor. 

 

 

 

 



Dual Role of Port 0 and Port 2 

Dual role of Port 0 − Port 0 is also designated as AD0–AD7, as it can be used for both data and address 

handling. While connecting an 8051 to external memory, Port 0 can provide both address and data. The 

8051 microcontroller then multiplexes the input as address or data in order to save pins. 

 

Dual role of Port 2 − Besides working as I/O, Port P2 is also used to provide 16-bit address bus for external 

memory along with Port 0. Port P2 is also designated as (A8– A15), while Port 0 provides the lower 8-bits 

via A0–A7. In other words, we can say that when an 8051 is connected to an external memory (ROM) 

which can be maximum up to 64KB and this is possible by 16 bit address bus because we know 216 = 

64KB. Port2 is used for the upper 8-bit of the 16 bits address, and it cannot be used for I/O and this is the 

way any Program code of external ROM is addressed. 

 

Special Function Registers:  
The 8051 is a flexible microcontroller with a relatively large number of modes of operations. Your 

program may inspect and/or change the operating mode of the 8051 by manipulating the values of 

the 8051's Special Function Registers (SFRs).  

SFRs are accessed as if they were normal Internal RAM. The only difference is that Internal RAM is 

from address 00h through 7Fh whereas SFR registers exist in the address range of 80h through FFh. 

Each SFR has an address (80h through FFh) and a name.  

The following chart provides a graphical presentation of the 8051's SFRs, their names, and their 

address. As you can see, although the address range of 80h through FFh offer 128 possible addresses, 

there are only 21 SFRs in a standard 8051. All other addresses in the SFR range (80h through FFh) 

are considered invalid. Writing to or reading from these registers may produce undefined values or 

behavior.  

 
 

SFR Types  
SFRs related to the I/O ports: The 8051 has four I/O ports of 8 bits, for a total of 32 I/O lines. 

Whether a given I/O line is high or low and the value read from the line are controlled by the SFRs.  

The SFRs control the operation or the configuration of some aspect of the 8051. For example, TCON 

controls the timers, SCON controls the serial port, the remaining SFRs, are auxillary SFRs in the 

sense that they don't directly configure the 8051 but obviously the  

8051 cannot operate without them. For example, once the serial port has been configured using 

SCON, the program may read or write to the serial port using the SBUF register.  

SFR Descriptions  
P0 (Port 0, Address 80h, Bit-Addressable): This is input/output port 0. Each bit of this  

SFR corresponds to one of the pins on the microcontroller. For example, bit 0 of port 0 is pin P0.0, 

bit 7 is in P0.7. Writing a value of 1 to a bit of this SFR will send a high level on  



the corresponding I/O pin whereas a value of 0 will bring it to a low level.  

SP (Stack Pointer, Address 81h): This is the stack pointer of the microcontroller. This SFR 

indicates where the next value to be taken from the stack will be read from in Internal RAM. If you 

push a value onto the stack, the value will be written to the address of SP + 1. This SFR is modified 

by all instructions which modify the stack, such as PUSH, POP, LCALL, RET, RETI, and whenever 

interrupts are provoked by the microcontroller. The Stack Pointer, like all registers except DPTR and 

PC, may hold an 8-bit (1-byte) value.  

When you pop a value off the stack, the 8051 returns the value from the memory location indicated 

by SP, and then decrements the value of SP.  

This order of operation is important. When the 8051 is initialized SP will be initialized to  

07h. If you immediately push a value onto the stack, the value will be stored in Internal  

RAM address 08h.  

First the 8051 will increment the value of SP (from 07h to 08h) and then will store the pushed value 

at that memory address (08h). It is also used intrinsically whenever an interrupt is triggered .  

DPL/DPH (Data Pointer Low/High, Addresses 82h/83h): The SFRs DPL and DPH work together 

to represent a 16-bit value called the Data Pointer. The data pointer is used in 

operations regarding external RAM and some instructions involving code memory. Since it is an 

unsigned two-byte integer value, it can represent values from 0000h to FFFFh (0 through 65,535 

decimal).  

PCON (Power Control, Addresses 87h): The Power Control SFR is used to control the  

8051's power control modes. Certain operation modes of the 8051 allow the 8051 to go into a type of 

"sleep" mode which requires much less power. These modes of operation are controlled through 

PCON. Additionally, one of the bits in PCON is used to double the effective baud rate of the 8051's 

serial port.  

TCON (Timer Control, Addresses 88h, Bit-Addressable): The Timer Control SFR is used to 

configure and modify the way in which the 8051's two timers operate. This SFR controls whether 

each of the two timers is running or stopped and contains a flag to indicate that each timer has 

overflowed. Additionally, some non-timer related bits are located in the TCON SFR. These bits are 

used to configure the way in which the external interrupts are activated and also contain the external 

interrupt flags which are set when an external interrupt has occurred.  

TMOD (Timer Mode, Addresses 89h): The Timer Mode SFR is used to configure the mode of 

operation of each of the two timers. Using this SFR your program may configure each timer to be a 

16-bit timer, an 8-bit autoreload timer, a 13-bit timer, or two separate timers. Additionally, you may 

configure the timers to only count when an external pin is activated or to count "events" that are 

indicated on an external pin.  

TL0/TH0 (Timer 0 Low/High, Addresses 8Ah/8Bh): These two SFRs, taken together, represent 

timer 0. Their exact behavior depends on how the timer is configured in the TMOD SFR; however, 

these timers always count up. What is configurable is how and when they increment in value.  

TL1/TH1 (Timer 1 Low/High, Addresses 8Ch/8Dh): These two SFRs, taken together, represent 

timer 1. Their exact behavior depends on how the timer is configured in the TMOD SFR; however, 

these timers always count up. What is configurable is how and when they increment in value.  

P1 (Port 1, Address 90h, Bit-Addressable): This is input/output port 1. Each bit of this SFR 

corresponds to one of the pins on the microcontroller. For example, bit 0 of port 1 is pin P1.0, bit 7 is 

pin P1.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin 

whereas a value of 0 will bring it to a low level.  

SCON (Serial Control, Addresses 98h, Bit-Addressable): The Serial Control SFR is used to 

configure the behavior of the 8051's on-board serial port. This SFR controls the baud rate of the 

serial port, whether the serial port is activated to receive data, and also contains flags that are set 

when a byte is successfully sent or received.  



SBUF (Serial Control, Addresses 99h): The Serial Buffer SFR is used to send and receive data via 

the on-board serial port. Any value written to SBUF will be sent out the serial port's TXD pin. Any 

value which the 8051 receives via the serial port's RXD pin will be delivered to the user program via 

SBUF. In other words, SBUF serves as the output port when written to and as an input port when 

read from.  

P2 (Port 2, Address A0h, Bit-Addressable): This is input/output port 2. Each bit of this SFR 

corresponds to one of the pins on the microcontroller. For example, bit 0 of port 2 is pin P2.0, bit 7 is 

pin P2.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin 

whereas a value of 0 will bring it to a low level.  

 

IE (Interrupt Enable, Addresses A8h): The Interrupt Enable SFR is used to enable and disable  

specific interrupts. The low 7 bits of the SFR are used to enable/disable the specific interrupts, where 

as the highest bit is used to enable or disable ALL interrupts. Thus, if the high bit of IE is 0 all 

interrupts are disabled regardless of whether an individual interrupt is enabled by setting a lower bit.  

P3 (Port 3, Address B0h, Bit-Addressable): This is input/output port 3. Each bit of this SFR 

corresponds to one of the pins on the microcontroller. For example, bit 0 of port 3 is pin P3.0, bit 7 is 

pin P3.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin 

whereas a value of 0 will bring it to a low level.  

IP (Interrupt Priority, Addresses B8h, Bit-Addressable): The Interrupt Priority SFR is used to 

specify the relative priority of each interrupt. On the 8051, an interrupt may either be of low (0) 

priority or high (1) priority. An interrupt may only interrupt interrupts of lower priority. For example, 

if we configure the 8051 so that all interrupts are of low priority except the serial interrupt, the serial 

interrupt will always be able to interrupt the system, even if another interrupt is currently executing. 

However, if a serial interrupt is executing no other interrupt will be able to interrupt the serial 

interrupt routine since the serial interrupt routine has the highest priority.  

PSW (Program Status Word, Addresses D0h, Bit-Addressable): The Program Status Word is 

used to store a number of important bits that are set and cleared by 8051 instructions. The PSW SFR 

contains the carry flag, the auxiliary carry flag, the overflow flag, and the parity flag. Additionally, 

the PSW register contains the register bank select flags which are used to select which of the "R" 

register banks  

are currently selected.  

ACC (Accumulator, Addresses E0h, Bit-Addressable): The Accumulator is one of the most used 

SFRs on the 8051 since it is involved in so many instructions. The Accumulator resides as an SFR at 

E0h, which means the instruction MOV A,#20h is really the same as MOV E0h,#20h. first method 

requires two bytes whereas the second option requires three bytes.  

It can hold an 8-bit (1-byte) value and More than half of the 8051‘s 255 instructions  

manipulate or use the accumulator in some way.  

For example, if you want to add the number 10 and 20, the resulting 30 will be store in the 

Accumulator. Once you have a value in the Accumulator you may continue processing the value or 

you may store it in another register or in memory.  

B (B Register, Addresses F0h, Bit-Addressable): The "B" register is used in two instructions:  

the multiply and divide operations. The B register is also commonly used by programmers as an 

auxiliary register to temporarily store values. Thus, if you want to quickly and easily multiply or divide 

A by another number, you may store the other number in "B" and make use of these two instruction 

Aside from the MUL and DIV instructions, the "B" register is often used as yet another temporary 

storage register much like a ninth "R" register 
 

 

 



Program Counter 

 

The Program Counter is a 16- or 32-bit register which contains the address of the next instruction to be 

executed. The PC automatically increments to the next sequential memory location every time an 

instruction is fetched. Branch, jump, and interrupt operations load the Program Counter with an address 

other than the next sequential location. 

 

Activating a power-on reset will cause all values in the register to be lost. It means the value of the PC 

(program counter) is 0 upon reset, forcing the CPU to fetch the first opcode from the ROM memory location 

0000. It means we must place the first byte of upcode in ROM location 0000 because that is where the CPU 

expects to find the first instruction 

 

Reset Vector 

The significance of the reset vector is that it points the processor to the memory address which contains the 

firmware's first instruction. Without the Reset Vector, the processor would not know where to begin 

execution. Upon reset, the processor loads the Program Counter (PC) with the reset vector value from a 

predefined memory location. On CPU08 architecture, this is at location $FFFE:$FFFF. 

 

When the reset vector is not necessary, developers normally take it for granted and don’t program into the 

final image. As a result, the processor doesn't start up on the final product. It is a common mistake that 

takes place during the debug phase. 

 

Stack Pointer 

Stack is implemented in RAM and a CPU register is used to access it called SP (Stack Pointer) register. SP 

register is an 8-bit register and can address memory addresses of range 00h to FFh. Initially, the SP register 

contains value 07 to point to location 08 as the first location being used for the stack by the 8051. 

 

When the content of a CPU register is stored in a stack, it is called a PUSH operation. When the content of 

a stack is stored in a CPU register, it is called a POP operation. In other words, a register is pushed onto the 

stack to save it and popped off the stack to retrieve it. 

 

I/O ports and circuits 

 

Each port of 8051 has bidirectional capability. Port 0 is called 'true bidirectional port' as it floats 

(tristated) when configured as input. Port-1, 2, 3 are called 'quasi bidirectional port'. Port-0 Pin 

Structure Port -0 has 8 pins (P0.0-P0.7). 

 

 



 

Port-0 can be configured as a normal bidirectional I/O port or it can be used for address/data interfacing for 

accessing external memory. When control is '1', the port is used for address/data interfacing. When the 

control is '0', the port can be used as a normal bidirectional I/O port. Let us assume that control is '0'. When 

the port is used as an input port, '1' is written to the latch. In this situation both the output MOSFETs are 

'off'. Hence the output pin floats. This high impedance pin can be pulled up or low by an external source. 

When the port is used as an output port, a '1' written to the latch again turns 'off' both the output MOSFETs 

and causes the output pin to float. An external pull-up is required to output a 

'1'. But when '0' is written to the latch, the pin is pulled down by the lower MOSFET. Hence the output 

becomes zero. 

When the control is '1', address/data bus controls the output driver MOSFETs. If the address/data bus 

(internal) is '0', the upper MOSFET is 'off' and the lower MOSFET is 

'on'. The output becomes '0'. If the address/data bus is '1', the upper transistor is 'on' and the lower transistor 

is 'off'. Hence the output is '1'. Hence for normal address/data 

interfacing (for external memory access) no pull-up resistors are required. 

Port-0 latch is written to with 1's when used for external memory access. 

Port-1 Pin Structure Port-1 has 8 pins (P1.1-P1.7) 

 
Port-1 does not have any alternate function i.e. it is dedicated solely for I/O interfacing. When used as 

output port, the pin is pulled up or down through internal pull-up. To use port-1 as input port, '1' has to be 

written to the latch. In this input mode when '1' is written to the pin by the external device then it read fine. 

But when '0' is written to the pin by the external device then the external source must sink current due to 

internal pull-up. If the external device is not able to sink the current the pin voltage may rise, leading to a 

possible wrong reading. 

 

 

 

 

 

 

 

 

 

 

 



PORT 2 Pin Structure Port-2 has 8-pins (P2.0-P2.7) . 

 

 
 

 

Port-2 is used for higher external address byte or a normal input/output port. The I/O operation is 

similar to Port-1. Port-2 latch remains stable when Port-2 pin are used for external memory access. 

Here again due to internal pull-up there is limited current driving capability.  

PORT 3 Pin Structure  

Port-3 has 8 pin (P3.0-P3.7). Port-3 pins have alternate functions 

 

 

 
 

Each pin of Port-3 can be individually programmed for I/O operation or for alternate function. The alternate 

function can be activated only if the corresponding latch has been written to '1'. To use the port as input 

port, '1' should be written to the latch. This port also has internal pull-up and limited current driving 

capability. 

 

 



 

 

 

 

 

 

 

8051 Addressing Modes 

 

8051 has four addressing modes.  

 

1. Immediate Addressing: Data is immediately available in the instruction.  

For example -  

ADD A, #77; Adds 77 (decimal) to A and stores in A  

ADD A, #4DH; Adds 4D (hexadecimal) to A and stores in A MOV DPTR, #1000H; Moves 1000 

(hexadecimal) to data pointer  

 

2. Bank Addressing or Register Addressing: This way of addressing accesses the bytes in the current 

register bank. Data is available in the register specified in the instruction. The register bank is 

decided by 2 bits of Processor Status Word (PSW). For example-  

ADD A, R0; Adds content of R0 to A and stores in A  

 

3. Direct Addressing:  

The address of the data is available in the instruction. For example - MOV A, 088H; Moves content of 

SFR TCON (address 088H)to A 

 

4. Register Indirect Addressing:  

The address of data is available in the R0 or R1 registers as specified in the instruction. For example 

- MOV A, @R0 moves content of address pointed by R0 to A .  

 

5. External Data Addressing:  

Pointer used for external data addressing can be either R0/R1 (256 byte access) or DPTR (64kbyte 

access).  

 

For example - MOVX A, @R0; Moves content of 8-bit address pointed by R0 to A  

MOVX A, @DPTR; Moves content of 16-bit address pointed by DPTR to A  

 

6. External Code Addressing:  

Sometimes we may want to store non-volatile data into the ROM e.g. look-up tables. Such data may 

require reading the code memory. This may be done as follows -  

MOVC A, @A+DPTR; Moves content of address pointed by A+DPTR to A MOVC A, @A+PC; 

Moves content of address pointed by A+PC to A 

 

 



Reference 8051 / 8052 Instruction Set 

ACALL 

Operation: ACALL 

Function: Absolute Call Within 2K Block 

Syntax: ACALL code address 

 

Instructions OpCode Bytes Cycles Flags 

ACALL page0 0x11 2 2 None 

ACALL page1 0x31 2 2 None 

ACALL page2 0x51 2 2 None 

ACALL page3 0x71 2 2 None 

ACALL page4 0x91 2 2 None 

ACALL page5 0xB1 2 2 None 

ACALL page6 0xD1 2 2 None 

ACALL page7 0xF1 2 2 None 

  

Description: ACALL unconditionally calls a subroutine at the indicated code address. ACALL 
pushes the address of the instruction that follows ACALL onto the stack, least-significant-byte 
first, most-significant-byte second. The Program Counter is then updated so that program 
execution continues at the indicated address.  

The new value for the Program Counter is calculated by replacing the least-significant-byte of 
the Program Counter with the second byte of the ACALL instruction, and replacing bits 0-2 of 
the most-significant-byte of the Program Counter with 3 bits that indicate the page. Bits 3-7 of 
the most-significant-byte of the Program Counter remain unchanged.  

Since only 11 bits of the Program Counter are affected by ACALL, calls may only be made to 
routines located within the same 2k block as the first byte that follows ACALL.  

See Also: LCALL, RET, Instruction Set 

ADD, ADDC 



Operation: ADD, ADDC 

Function: Add Accumulator, Add Accumulator With Carry 

Syntax: ADD A,operand 

  ADDC A,operand 

 

Instructions OpCode Bytes Cycles Flags 

ADD A,#data 0x24 2 1 C, AC, OV 

ADD A,iram addr 0x25 2 1 C, AC, OV 

ADD A,@R0 0x26 1 1 C, AC, OV 

ADD A,@R1 0x27 1 1 C, AC, OV 

ADD A,R0 0x28 1 1 C, AC, OV 

ADD A,R1 0x29 1 1 C, AC, OV 

ADD A,R2 0x2A 1 1 C, AC, OV 

ADD A,R3 0x2B 1 1 C, AC, OV 

ADD A,R4 0x2C 1 1 C, AC, OV 

ADD A,R5 0x2D 1 1 C, AC, OV 

ADD A,R6 0x2E 1 1 C, AC, OV 

ADD A,R7 0x2F 1 1 C, AC, OV 

  

Instructions OpCode Bytes Cycles Flags 

ADDC A,#data 0x34 2 1 C, AC, OV 

ADDC A,iram addr 0x35 2 1 C, AC, OV 

ADDC A,@R0 0x36 1 1 C, AC, OV 

ADDC A,@R1 0x37 1 1 C, AC, OV 

ADDC A,R0 0x38 1 1 C, AC, OV 

ADDC A,R1 0x39 1 1 C, AC, OV 

ADDC A,R2 0x3A 1 1 C, AC, OV 

ADDC A,R3 0x3B 1 1 C, AC, OV 

ADDC A,R4 0x3C 1 1 C, AC, OV 



ADDC A,R5 0x3D 1 1 C, AC, OV 

ADDC A,R6 0x3E 1 1 C, AC, OV 

ADDC A,R7 0x3F 1 1 C, AC, OV 
 

Description: Description: ADD and ADDC both add the value operand to the value of the 
Accumulator, leaving the resulting value in the Accumulator. The value operand is not affected. 
ADD and ADDC function identically except that ADDC adds the value of operand as well as the 
value of the Carry flag whereas ADD does not add the Carry flag to the result.  

The Carry bit (C) is set if there is a carry-out of bit 7. In other words, if the unsigned summed 
value of the Accumulator, operand and (in the case of ADDC) the Carry flag exceeds 255 Carry 
is set. Otherwise, the Carry bit is cleared.  

The Auxiliary Carry (AC) bit is set if there is a carry-out of bit 3. In other words, if the 
unsigned summed value of the low nibble of the Accumulator, operand and (in the case of 
ADDC) the Carry flag exceeds 15 the Auxiliary Carry flag is set. Otherwise, the Auxiliary Carry 
flag is cleared.  

The Overflow (OV) bit is set if there is a carry-out of bit 6 or out of bit 7, but not both. In other 
words, if the addition of the Accumulator, operand and (in the case of ADDC) the Carry flag 
treated as signed values results in a value that is out of the range of a signed byte (-128 through 
+127) the Overflow flag is set. Otherwise, the Overflow flag is cleared.  

See Also: SUBB, DA, INC, DEC, Instruction Set 

AJMP 

Operation: AJMP 

Function: Absolute Jump Within 2K Block 

Syntax: AJMP code address 

  

Instructions OpCode Bytes Cycles Flags 

AJMP page0 0x01 2 2 None 

AJMP page1 0x21 2 2 None 

AJMP page2 0x41 2 2 None 

AJMP page3 0x61 2 2 None 

AJMP page4 0x81 2 2 None 



AJMP page5 0xA1 2 2 None 

AJMP page6 0xC1 2 2 None 

AJMP page7 0xE1 2 2 None 

  

Description: AJMP unconditionally jumps to the indicated code address. The new value for the 
Program Counter is calculated by replacing the least-significant-byte of the Program Counter 
with the second byte of the AJMP instruction, and replacing bits 0-2 of the most-significant-byte 
of the Program Counter with 3 bits that indicate the page of the byte following the AJMP 
instruction. Bits 3-7 of the most-significant-byte of the Program Counter remain unchanged.  

Since only 11 bits of the Program Counter are affected by AJMP, jumps may only be made to 
code located within the same 2k block as the first byte that follows AJMP.  

See Also: LJMP, SJMP, Instruction Set 

ANL 

Operation: ANL 

Function: Bitwise AND 

Syntax: ANL operand1, operand2 

  

Instructions OpCode Bytes Cycles Flags 

ANL iram addr,A 0x52 2 1 None 

ANL iram addr,#data 0x53 3 2 None 

ANL A,#data 0x54 2 1 None 

ANL A,iram addr 0x55 2 1 None 

ANL A,@R0 0x56 1 1 None 

ANL A,@R1 0x57 1 1 None 

ANL A,R0 0x58 1 1 None 

ANL A,R1 0x59 1 1 None 

ANL A,R2 0x5A 1 1 None 

ANL A,R3 0x5B 1 1 None 



ANL A,R4 0x5C 1 1 None 

ANL A,R5 0x5D 1 1 None 

ANL A,R6 0x5E 1 1 None 

ANL A,R7 0x5F 1 1 None 

ANL C,bit addr 0x82 2 1 C 

ANL C,/bit addr 0xB0 2 1 C 

  

Description: ANL does a bitwise "AND" operation between operand1 and operand2, leaving the 
resulting value in operand1. The value of operand2 is not affected. A logical "AND" compares 
the bits of each operand and sets the corresponding bit in the resulting byte only if the bit was set 
in both of the original operands, otherwise the resulting bit is cleared.  

See Also: ORL, XRL, Instruction Set 

CJNE 

Operation: CJNE 

Function: Compare and Jump If Not Equal 

Syntax: CJNE operand1,operand2,reladdr 

  

Instructions OpCode Bytes Cycles Flags 

CJNE A,#data,reladdr 0xB4 3 2 C 

CJNE A,iram addr,reladdr 0xB5 3 2 C 

CJNE @R0,#data,reladdr 0xB6 3 2 C 

CJNE @R1,#data,reladdr 0xB7 3 2 C 

CJNE R0,#data,reladdr 0xB8 3 2 C 

CJNE R1,#data,reladdr 0xB9 3 2 C 

CJNE R2,#data,reladdr 0xBA 3 2 C 

CJNE R3,#data,reladdr 0xBB 3 2 C 

CJNE R4,#data,reladdr 0xBC 3 2 C 



CJNE R5,#data,reladdr 0xBD 3 2 C 

CJNE R6,#data,reladdr 0xBE 3 2 C 

CJNE R7,#data,reladdr 0xBF 3 2 C 

  

Description: CJNE compares the value of operand1 and operand2 and branches to the indicated 
relative address if operand1 and operand2 are not equal. If the two operands are equal program 
flow continues with the instruction following the CJNE instruction.  

The Carry bit (C) is set if operand1 is less than operand2, otherwise it is cleared.  

See Also: DJNZ, Instruction Set  

CLR 

Operation: CLR 

Function: Clear Register 

Syntax: CLR register 

  

Instructions OpCode Bytes Cycles Flags 

CLR bit addr 0xC2 2 1 None 

CLR C 0xC3 1 1 C 

CLR A 0xE4 1 1 None 

  

Description: CLR clears (sets to 0) all the bit(s) of the indicated register. If the register is a bit 
(including the carry bit), only the specified bit is affected. Clearing the Accumulator sets the 
Accumulator’s value to 0.  

See Also: SETB, Instruction Set  

CPL 

Operation: CPL 

Function: Complement Register 

Syntax: CPL operand 



  

Instructions OpCode Bytes Cycles Flags 

CPL A 0xF4 1 1 None 

CPL C 0xB3 1 1 C 

CPL bit addr 0xB2 2 1 None 

  

Description: CPL complements operand, leaving the result in operand. If operand is a single bit 
then the state of the bit will be reversed. If operand is the Accumulator then all the bits in the 
Accumulator will be reversed. This can be thought of as "Accumulator Logical Exclusive OR 
255" or as "255-Accumulator." If the operand refers to a bit of an output Port, the value that will 
be complemented is based on the last value written to that bit, not the last value read from it.  

See Also: CLR, SETB, Instruction Set  

DA 

Operation: DA 

Function: Decimal Adjust Accumulator 

Syntax: DA A 

  

Instructions OpCode Bytes Cycles Flags 

DA 0xD4 1 1 C 

  

Description: DA adjusts the contents of the Accumulator to correspond to a BCD (Binary Coded 
Decimal) number after two BCD numbers have been added by the ADD or ADDC instruction. If 
the carry bit is set or if the value of bits 0-3 exceed 9, 0x06 is added to the accumulator. If the 
carry bit was set when the instruction began, or if 0x06 was added to the accumulator in the first 
step, 0x60 is added to the accumulator.  

The Carry bit (C) is set if the resulting value is greater than 0x99, otherwise it is cleared.  

See Also: ADD, ADDC, Instruction Set  

DEC 



Operation: DEC 

Function: Decrement Register 

Syntax: DEC register 

  

Instructions OpCode Bytes Cycles Flags 

DEC A 0x14 1 1 None 

DEC iram addr 0x15 2 1 None 

DEC @R0 0x16 1 1 None 

DEC @R1 0x17 1 1 None 

DEC R0 0x18 1 1 None 

DEC R1 0x19 1 1 None 

DEC R2 0x1A 1 1 None 

DEC R3 0x1B 1 1 None 

DEC R4 0x1C 1 1 None 

DEC R5 0x1D 1 1 None 

DEC R6 0x1E 1 1 None 

DEC R7 0x1F 1 1 None 

  

Description: DEC decrements the value of register by 1. If the initial value of register is 0, 
decrementing the value will cause it to reset to 255 (0xFF Hex). Note: The Carry Flag is NOT set 
when the value "rolls over" from 0 to 255.  

See Also: INC, SUBB, Instruction Set  

DIV 

Operation: DIV 

Function: Divide Accumulator by B 

Syntax: DIV AB 

  



Instructions OpCode Bytes Cycles Flags 

DIV AB 0x84 1 1 C, OV 

  

Description: Divides the unsigned value of the Accumulator by the unsigned value of the "B" 
register. The resulting quotient is placed in the Accumulator and the remainder is placed in the 
"B" register.  

The Carry flag (C) is always cleared.  

The Overflow flag (OV) is set if division by 0 was attempted, otherwise it is cleared.  

See Also: MUL AB, Instruction Set 

DJNZ 

Operation: DJNZ 

Function: Decrement and Jump if Not Zero 

Syntax: DJNZ register,reladdr 

  

Instructions OpCode Bytes Cycles Flags 

DJNZ iram addr,reladdr 0xD5 3 2 None 

DJNZ R0,reladdr 0xD8 2 2 None 

DJNZ R1,reladdr 0xD9 2 2 None 

DJNZ R2,reladdr 0xDA 2 2 None 

DJNZ R3,reladdr 0xDB 2 2 None 

DJNZ R4,reladdr 0xDC 2 2 None 

DJNZ R5,reladdr 0xDD 2 2 None 

DJNZ R6,reladdr 0xDE 2 2 None 

DJNZ R7,reladdr 0xDF 2 2 None 

  



Description: DJNZ decrements the value of register by 1. If the initial value of register is 0, 
decrementing the value will cause it to reset to 255 (0xFF Hex). If the new value of register is 
not 0 the program will branch to the address indicated by relative addr. If the new value of 
register is 0 program flow continues with the instruction following the DJNZ instruction.  

See Also: DEC, JZ, JNZ, Instruction Set  

INC 

Operation: INC 

Function: Increment Register 

Syntax: INC register 

  

Instructions OpCode Bytes Cycles Flags 

INC A 0x04 1 1 None 

INC iram addr 0x05 2 1 None 

INC @R0 0x06 1 1 None 

INC @R1 0x07 1 1 None 

INC R0 0x08 1 1 None 

INC R1 0x09 1 1 None 

INC R2 0x0A 1 1 None 

INC R3 0x0B 1 1 None 

INC R4 0x0C 1 1 None 

INC R5 0x0D 1 1 None 

INC R6 0x0E 1 1 None 

INC R7 0x0F 1 1 None 

INC DPTR 0xA3 1 2 None 

  

Description: INC increments the value of register by 1. If the initial value of register is 255 
(0xFF Hex), incrementing the value will cause it to reset to 0. Note: The Carry Flag is NOT set 
when the value "rolls over" from 255 to 0.  



In the case of "INC DPTR", the value two-byte unsigned integer value of DPTR is incremented. 
If the initial value of DPTR is 65535 (0xFFFF Hex), incrementing the value will cause it to reset 
to 0. Again, the Carry Flag is NOT set when the value of DPTR "rolls over" from 65535 to 0.  

See Also: ADD, ADDC, DEC, Instruction Set 

JB 

Operation: JB 

Function: Jump if Bit Set 

Syntax: JB bit addr, reladdr 

  

Instructions OpCode Bytes Cycles Flags 

JB bit addr,reladdr 0x20 3 2 None 

  

Description: JB branches to the address indicated by reladdr if the bit indicated by bit addr is 
set. If the bit is not set program execution continues with the instruction following the JB 
instruction.  

See Also: JBC, JNB. Instruction Set 

JBC 

Operation: JBC 

Function: Jump if Bit Set and Clear Bit 

Syntax: JB bit addr, reladdr 

  

Instructions OpCode Bytes Cycles Flags 

JBC bit addr,reladdr 0x10 3 2 None 

  

Description: JBC will branch to the address indicated by reladdr if the bit indicated by bit addr 
is set. Before branching to reladdr the instruction will clear the indicated bit. If the bit is not set 
program execution continues with the instruction following the JBC instruction.  



See Also: JB, JNB, Instruction Set  

JC 

Operation: JC 

Function: Jump if Carry Set 

Syntax: JC reladdr 

  

Instructions OpCode Bytes Cycles Flags 

JC reladdr 0x40 2 2 None 

  

Description: JC will branch to the address indicated by reladdr if the Carry Bit is set. If the 
Carry Bit is not set program execution continues with the instruction following the JC 
instruction.  

See Also: JNC, Instruction Set  

JMP 

Operation: JMP 

Function: Jump to Data Pointer + Accumulator 

Syntax: JMP @A+DPTR 

  

Instructions OpCode Bytes Cycles Flags 

JMP @A+DPTR 0x73 1 2 None 

  

Description: JMP jumps unconditionally to the address represented by the sum of the value of 
DPTR and the value of the Accumulator.  

See Also: LJMP, AJMP, SJMP, Instruction Set  

JNP 



Operation: JNB 

Function: Jump if Bit Not Set 

Syntax: JNB bit addr,reladdr 

  

Instructions OpCode Bytes Cycles Flags 

JNB bit addr,reladdr 0x30 3 2 None 

  

Description: JNB will branch to the address indicated by reladdress if the indicated bit is not set. 
If the bit is set program execution continues with the instruction following the JNB instruction.  

See Also: JB, JBC, Instruction Set 

JNC 

Operation: JNC 

Function: Jump if Carry Not Set 

Syntax: JNC reladdr 

  

Instructions OpCode Bytes Cycles Flags 

JNC reladdr 0x50 2 2 None 

  

Description: JNC branches to the address indicated by reladdr if the carry bit is not set. If the 
carry bit is set program execution continues with the instruction following the JNB instruction.  

See Also: JC, Instruction Set 

JNZ 

Operation: JNZ 

Function: Jump if Accumulator Not Zero 

Syntax: JNZ reladdr 

  



Instructions OpCode Bytes Cycles Flags 

JNZ reladdr 0x70 2 2 None 

  

Description: JNZ will branch to the address indicated by reladdr if the Accumulator contains 
any value except 0. If the value of the Accumulator is zero program execution continues with the 
instruction following the JNZ instruction.  

See Also: JZ, Instruction Set  

JZ 

Operation: JZ 

Function: Jump if Accumulator Zero 

Syntax: JNZ reladdr 

  

Instructions OpCode Bytes Cycles Flags 

JZ reladdr 0x60 2 2 None 

  

Description: JZ branches to the address indicated by reladdr if the Accumulator contains the 
value 0. If the value of the Accumulator is non-zero program execution continues with the 
instruction following the JNZ instruction.  

See Also: JNZ, Instruction Set 

LCALL 

Operation: LCALL 

Function: Long Call 

Syntax: LCALL code addr 

  

Instructions OpCode Bytes Cycles Flags 

LCALL code addr 0x12 3 2 None 



  

Description: LCALL calls a program subroutine. LCALL increments the program counter by 3 
(to point to the instruction following LCALL) and pushes that value onto the stack (low byte 
first, high byte second). The Program Counter is then set to the 16-bit value which follows the 
LCALL opcode, causing program execution to continue at that address.  

See Also: ACALL, RET, Instruction Set  

LJMP 

Operation: LJMP 

Function: Long Jump 

Syntax: LJMP code addr 

  

Instructions OpCode Bytes Cycles Flags 

LJMP code addr 0x02 3 2 None 

  

Description: LJMP jumps unconditionally to the specified code addr.  

See Also: AJMP, SJMP, JMP, Instruction Set  

MOV 

Operation: MOV 

Function: Move Memory 

Syntax: MOV operand1,operand2 

  

Instructions OpCode Bytes Cycles Flags 

MOV @R0,#data 0x76 2 1 None 

MOV @R1,#data 0x77 2 1 None 

MOV @R0,A 0xF6 1 1 None 

MOV @R1,A 0xF7 1 1 None 



MOV @R0,iram addr 0xA6 2 2 None 

MOV @R1,iram addr 0xA7 2 2 None 

MOV A,#data 0x74 2 1 None 

MOV A,@R0 0xE6 1 1 None 

MOV A,@R1 0xE7 1 1 None 

MOV A,R0 0xE8 1 1 None 

MOV A,R1 0xE9 1 1 None 

MOV A,R2 0xEA 1 1 None 

MOV A,R3 0xEB 1 1 None 

MOV A,R4 0xEC 1 1 None 

MOV A,R5 0xED 1 1 None 

MOV A,R6 0xEE 1 1 None 

MOV A,R7 0xEF 1 1 None 

MOV A,iram addr 0xE5 2 1 None 

MOV C,bit addr 0xA2 2 1 C 

MOV DPTR,#data16 0x90 3 2 None 

MOV R0,#data 0x78 2 1 None 

MOV R1,#data 0x79 2 1 None 

MOV R2,#data 0x7A 2 1 None 

MOV R3,#data 0x7B 2 1 None 

MOV R4,#data 0x7C 2 1 None 

MOV R5,#data 0x7D 2 1 None 

MOV R6,#data 0x7E 2 1 None 

MOV R7,#data 0x7F 2 1 None 

MOV R0,A 0xF8 1 1 None 

MOV R1,A 0xF9 1 1 None 

MOV R2,A 0xFA 1 1 None 

MOV R3,A 0xFB 1 1 None 



MOV R4,A 0xFC 1 1 None 

MOV R5,A 0xFD 1 1 None 

MOV R6,A 0xFE 1 1 None 

MOV R7,A 0xFF 1 1 None 

MOV R0,iram addr 0xA8 2 2 None 

MOV R1,iram addr 0xA9 2 2 None 

MOV R2,iram addr 0xAA 2 2 None 

MOV R3,iram addr 0xAB 2 2 None 

MOV R4,iram addr 0xAC 2 2 None 

MOV R5,iram addr 0xAD 2 2 None 

MOV R6,iram addr 0xAE 2 2 None 

MOV R7,iram addr 0xAF 2 2 None 

MOV bit addr,C 0x92 2 2 None 

MOV iram addr,#data 0x75 3 2 None 

MOV iram addr,@R0 0x86 2 2 None 

MOV iram addr,@R1 0x87 2 2 None 

MOV iram addr,R0 0x88 2 2 None 

MOV iram addr,R1 0x89 2 2 None 

MOV iram addr,R2 0x8A 2 2 None 

MOV iram addr,R3 0x8B 2 2 None 

MOV iram addr,R4 0x8C 2 2 None 

MOV iram addr,R5 0x8D 2 2 None 

MOV iram addr,R6 0x8E 2 2 None 

MOV iram addr,R7 0x8F 2 2 None 

MOV iram addr,A 0xF5 2 1 None 

MOV iram addr,iram addr 0x85 3 2 None 

  



Description: MOV copies the value of operand2 into operand1. The value of operand2 is not 
affected. Both operand1 and operand2 must be in Internal RAM. No flags are affected unless the 
instruction is moving the value of a bit into the carry bit in which case the carry bit is affected or 
unless the instruction is moving a value into the PSW register (which contains all the program 
flags).  

** Note: In the case of "MOV iram addr,iram addr", the operand bytes of the instruction are 
stored in reverse order. That is, the instruction consisting of the bytes 0x85, 0x20, 0x50 means 
"Move the contents of Internal RAM location 0x20 to Internal RAM location 0x50" whereas the 
opposite would be generally presumed.  

See Also: MOVC, MOVX, XCH, XCHD, PUSH, POP, Instruction Set  

MOVC 

Operation: MOVC 

Function: Move Code Byte to Accumulator 

Syntax: MOVC A,@A+register 

  

Instructions OpCode Bytes Cycles Flags 

MOVC A,@A+DPTR 0x93 1 2 None 

MOVC A,@A+PC 0x83 1 1 None 

Description: MOVC moves a byte from Code Memory into the Accumulator. The Code 
Memory address from which the byte will be moved is calculated by summing the value of the 
Accumulator with either DPTR or the Program Counter (PC). In the case of the Program 
Counter, PC is first incremented by 1 before being summed with the Accumulator.  

See Also: MOV, MOVX, Instruction Set  

MOVX 

Operation: MOVX 

Function: Move Data To/From External Memory (XRAM) 

Syntax: MOVX operand1,operand2 

  

 



Instructions OpCode Bytes Cycles Flags 

MOVX @DPTR,A 0xF0 1 2 None 

MOVX @R0,A 0xF2 1 2 None 

MOVX @R1,A 0xF3 1 2 None 

MOVX A,@DPTR 0xE0 1 2 None 

MOVX A,@R0 0xE2 1 2 None 

MOVX A,@R1 0xE3 1 2 None 

Description: MOVX moves a byte to or from External Memory into or from the Accumulator.  

If operand1 is @DPTR, the Accumulator is moved to the 16-bit External Memory address 
indicated by DPTR. This instruction uses both P0 (port 0) and P2 (port 2) to output the 16-bit 
address and data. If operand2 is DPTR then the byte is moved from External Memory into the 
Accumulator.  

If operand1 is @R0 or @R1, the Accumulator is moved to the 8-bit External Memory address 
indicated by the specified Register. This instruction uses only P0 (port 0) to output the 8-bit 
address and data. P2 (port 2) is not affected. If operand2 is @R0 or @R1 then the byte is moved 
from External Memory into the Accumulator.  

See Also: MOV, MOVC, Instruction Set  

MUL 

Operation: MUL 

Function: Multiply Accumulator by B 

Syntax: MUL AB 

  

Instructions OpCode Bytes Cycles Flags 

MUL AB 0xA4 1 4 C, OV 

Description: Multiples the unsigned value of the Accumulator by the unsigned value of the "B" 
register. The least significant byte of the result is placed in the Accumulator and the most-
significant-byte is placed in the "B" register.  

The Carry Flag (C) is always cleared.  



The Overflow Flag (OV) is set if the result is greater than 255 (if the most-significant byte is not 
zero), otherwise it is cleared.  

See Also: DIV, Instruction Set 

NOP 

Operation: NOP 

Function: None, waste time 

Syntax: No Operation 

  

Instructions OpCode Bytes Cycles Flags 

NOP 0x00 1 1 None 

Description: NOP, as it’s name suggests, causes No Operation to take place for one machine 
cycle. NOP is generally used only for timing purposes. Absolutely no flags or registers are 
affected.  

See Also: Instruction Set  

ORL 

Operation: ORL 

Function: Bitwise OR 

Syntax: ORL operand1,operand2 

  

Instructions OpCode Bytes Cycles Flags 

ORL iram addr,A 0x42 2 1 None 

ORL iram addr,#data 0x43 3 2 None 

ORL A,#data 0x44 2 1 None 

ORL A,iram addr 0x45 2 1 None 

ORL A,@R0 0x46 1 1 None 

ORL A,@R1 0x47 1 1 None 

ORL A,R0 0x48 1 1 None 



ORL A,R1 0x49 1 1 None 

ORL A,R2 0x4A 1 1 None 

ORL A,R3 0x4B 1 1 None 

ORL A,R4 0x4C 1 1 None 

ORL A,R5 0x4D 1 1 None 

ORL A,R6 0x4E 1 1 None 

ORL A,R7 0x4F 1 1 None 

ORL C,bit addr 0x72 2 2 C 

ORL C,/bit addr 0xA0 2 1 C 

Description: ORL does a bitwise "OR" operation between operand1 and operand2, leaving the 
resulting value in operand1. The value of operand2 is not affected. A logical "OR" compares the 
bits of each operand and sets the corresponding bit in the resulting byte if the bit was set in either 
of the original operands, otherwise the resulting bit is cleared.  

See Also: ANL, XRL, Instruction Set  

POP 

Operation: POP 

Function: Pop Value From Stack 

Syntax: POP 

  

Instructions OpCode Bytes Cycles Flags 

POP iram addr 0xD0 2 2 None 

Description: POP "pops" the last value placed on the stack into the iram addr specified. In other 
words, POP will load iram addr with the value of the Internal RAM address pointed to by the 
current Stack Pointer. The stack pointer is then decremented by 1.  

See Also: PUSH, Instruction Set  

PUSH 

Operation: PUSH 

Function: Push Value Onto Stack 



Syntax: PUSH 

  

Instructions OpCode Bytes Cycles Flags 

PUSH iram addr 0xC0 2 2 None 

Description: PUSH "pushes" the value of the specified iram addr onto the stack. PUSH first 
increments the value of the Stack Pointer by 1, then takes the value stored in iram addr and stores 
it in Internal RAM at the location pointed to by the incremented Stack Pointer.  

See Also: POP, Instruction Set 

RET 

Operation: RET 

Function: Return From Subroutine 

Syntax: RET 

  

Instructions OpCode Bytes Cycles Flags 

RET 0x22 1 2 None 

Description: RET is used to return from a subroutine previously called by LCALL or ACALL. 
Program execution continues at the address that is calculated by popping the topmost 2 bytes off 
the stack. The most-significant-byte is popped off the stack first, followed by the least-
significant-byte.  

See Also: LCALL, ACALL, RETI, Instruction Set  

RETI 

Operation: RETI 

Function: Return From Interrupt 

Syntax: RETI 

  

 



Instructions OpCode Bytes Cycles Flags 

RETI 0x32 1 2 None 

Description: RETI is used to return from an interrupt service routine. RETI first enables 
interrupts of equal and lower priorities to the interrupt that is terminating. Program execution 
continues at the address that is calculated by popping the topmost 2 bytes off the stack. The 
most-significant-byte is popped off the stack first, followed by the least-significant-byte.  

RETI functions identically to RET if it is executed outside of an interrupt service routine.  

See Also: RET, Instruction Set  

RL 

Operation: RL 

Function: Rotate Accumulator Left 

Syntax: RL A 

  

Instructions OpCode Bytes Cycles Flags 

RL A 0x23 1 1 C 

Description: Shifts the bits of the Accumulator to the left. The left-most bit (bit 7) of the 
Accumulator is loaded into bit 0.  

See Also: RLC, RR, RRC, Instruction Set 

RLC 

Operation: RLC 

Function: Rotate Accumulator Left Through Carry 

Syntax: RLC A 

  

Instructions OpCode Bytes Cycles Flags 

RLC A 0x33 1 1 C 



Description: Shifts the bits of the Accumulator to the left. The left-most bit (bit 7) of the 
Accumulator is loaded into the Carry Flag, and the original Carry Flag is loaded into bit 0 of the 
Accumulator. This function can be used to quickly multiply a byte by 2.  

See Also: RL, RR, RRC, Instruction Set  

RR 

Operation: RR 

Function: Rotate Accumulator Right 

Syntax: RR A 

  

Instructions OpCode Bytes Cycles Flags 

RR A 0x03 1 1 None 

Description: Shifts the bits of the Accumulator to the right. The right-most bit (bit 0) of the 
Accumulator is loaded into bit 7.  

See Also: RL, RLC, RRC, Instruction Set  

RRC 

Operation: RRC 

Function: Rotate Accumulator Right Through Carry 

Syntax: RRC A 

  

Instructions OpCode Bytes Cycles Flags 

RRC A 0x13 1 1 C 

Description: Shifts the bits of the Accumulator to the right. The right-most bit (bit 0) of the 
Accumulator is loaded into the Carry Flag, and the original Carry Flag is loaded into bit 7. This 
function can be used to quickly divide a byte by 2.  

See Also: RL, RLC, RR, Instruction Set  

SETB 



Operation: SETB 

Function: Set Bit 

Syntax: SETB bit addr 

  

Instructions OpCode Bytes Cycles Flags 

SETB C 0xD3 1 1 C 

SETB bit addr 0xD2 2 1 None 

Description: Sets the specified bit.  

See Also: CLR, Instruction Set  

SJMP 

Operation: SJMP 

Function: Short Jump 

Syntax: SJMP reladdr 

  

Instructions OpCode Bytes Cycles Flags 

SJMP reladdr 0x80 2 2 None 

Description: SJMP jumps unconditionally to the address specified reladdr. Reladdr must be 
within -128 or +127 bytes of the instruction that follows the SJMP instruction.  

See Also: LJMP, AJMP, Instruction Set  

SUBB 

Operation: SUBB 

Function: Subtract from Accumulator With Borrow 

Syntax: SUBB A,operand 

  

Instructions OpCode Bytes Cycles Flags 



SUBB A,#data 0x94 2 1 C, AC, OV 

SUBB A,iram addr 0x95 2 1 C, AC, OV 

SUBB A,@R0 0x96 1 1 C, AC, OV 

SUBB A,@R1 0x97 1 1 C, AC, OV 

SUBB A,R0 0x98 1 1 C, AC, OV 

SUBB A,R1 0x99 1 1 C, AC, OV 

SUBB A,R2 0x9A 1 1 C, AC, OV 

SUBB A,R3 0x9B 1 1 C, AC, OV 

SUBB A,R4 0x9C 1 1 C, AC, OV 

SUBB A,R5 0x9D 1 1 C, AC, OV 

SUBB A,R6 0x9E 1 1 C, AC, OV 

SUBB A,R7 0x9F 1 1 C, AC, OV 

  

Description: SUBB subtract the value of operand from the value of the Accumulator, leaving 
the resulting value in the Accumulator. The value operand is not affected.  

The Carry Bit (C) is set if a borrow was required for bit 7, otherwise it is cleared. In other 
words, if the unsigned value being subtracted is greater than the Accumulator the Carry Flag is 
set.  

The Auxillary Carry (AC) bit is set if a borrow was required for bit 3, otherwise it is cleared. In 
other words, the bit is set if the low nibble of the value being subtracted was greater than the low 
nibble of the Accumulator.  

The Overflow (OV) bit is set if a borrow was required for bit 6 or for bit 7, but not both. In other 
words, the subtraction of two signed bytes resulted in a value outside the range of a signed byte 
(-128 to 127). Otherwise it is cleared.  

See Also: ADD, ADDC, DEC, Instruction Set  

SWAP 

Operation: SWAP 

Function: Swap Accumulator Nibbles 

Syntax: SWAP A 



  

Instructions OpCode Bytes Cycles Flags 

SWAP A 0xC4 1 1 None 

  

Description: SWAP swaps bits 0-3 of the Accumulator with bits 4-7 of the Accumulator. This 
instruction is identical to executing "RR A" or "RL A" four times.  

See Also: RL, RLC, RR, RRC, Instruction Set  

XCH 

Operation: XCH 

Function: Exchange Bytes 

Syntax: XCH A,register 

  

Instructions OpCode Bytes Cycles Flags 

XCH A,@R0 0xC6 1 1 None 

XCH A,@R1 0xC7 1 1 None 

XCH A,R0 0xC8 1 1 None 

XCH A,R1 0xC9 1 1 None 

XCH A,R2 0xCA 1 1 None 

XCH A,R3 0xCB 1 1 None 

XCH A,R4 0xCC 1 1 None 

XCH A,R5 0xCD 1 1 None 

XCH A,R6 0xCE 1 1 None 

XCH A,R7 0xCF 1 1 None 

XCH A,iram addr 0xC5 2 1 None 

  

Description: Exchanges the value of the Accumulator with the value contained in register.  



See Also: MOV, Instruction Set 

XCHD 

Operation: XCHD 

Function: Exchange Digit 

Syntax: XCHD A,[@R0/@R1] 

  

Instructions OpCode Bytes Cycles Flags 

XCHD A,@R0 0xD6 1 1 None 

XCHD A,@R1 0xD7 1 1 None 

  

Description: Exchanges bits 0-3 of the Accumulator with bits 0-3 of the Internal RAM address 
pointed to indirectly by R0 or R1. Bits 4-7 of each register are unaffected.  

See Also: DA, Instruction Set  

XRL 

Operation: XRL 

Function: Bitwise Exclusive OR 

Syntax: XRL operand1,operand2 

  

Instructions OpCode Bytes Cycles Flags 

XRL iram addr,A 0x62 2 1 None 

XRL iram addr,#data 0x63 3 2 None 

XRL A,#data 0x64 2 1 None 

XRL A,iram addr 0x65 2 1 None 

XRL A,@R0 0x66 1 1 None 

XRL A,@R1 0x67 1 1 None 

XRL A,R0 0x68 1 1 None 



XRL A,R1 0x69 1 1 None 

XRL A,R2 0x6A 1 1 None 

XRL A,R3 0x6B 1 1 None 

XRL A,R4 0x6C 1 1 None 

XRL A,R5 0x6D 1 1 None 

XRL A,R6 0x6E 1 1 None 

XRL A,R7 0x6F 1 1 None 

 

Description: XRL does a bitwise "EXCLUSIVE OR" operation between operand1 and 
operand2, leaving the resulting value in operand1. The value of operand2 is not affected. A 
logical "EXCLUSIVE OR" compares the bits of each operand and sets the corresponding bit in 
the resulting byte if the bit was set in either (but not both) of the original operands, otherwise the 
bit is cleared.  

See Also: ANL, ORL, Instruction Set  

UNDEFINED 

Operation: Undefined Instruction 

Function: Undefined 

Syntax: ??? 

  

Instructions OpCode Bytes Cycles Flags 

??? 0xA5 1 1 C 

Description: The "Undefined" instruction is, as the name suggests, not a documented 
instruction. The 8051 supports 255 instructions and OpCode 0xA5 is the single OpCode that is 
not used by any documented function. Since it is not documented nor defined it is not 
recommended that it be executed. However, based on my research, executing this undefined 
instruction takes 1 machine cycle and appears to have no effect on the system except that the 
Carry Bit always seems to be set.  

 
 
 



Programming 8051 Timers  
 

One of the primary uses of timers is to measure time.  When a timer is in interval timer mode (as 

opposed to event counter mode) and correctly configured, it will increment by 1 every machine cycle. 

A single machine cycle consists of  12 crystal pulses. Thus a running timer will be 

incremented:11,059,000 / 12 = 921,583 times  per second.  

 

Unlike instructions which require 1 machine cycle, others 2, and others 4--the timers are consistent: 

They will always be incremented once per machine cycle. Thus if a timer has  

counted from 0 to 50,000 you may calculate:  50,000 / 921,583 = .0542.0542 seconds have passed. To 

execute an event once per second  you‘d have to wait for the timer to count from 0 to 50,000 

18.45times.  

To calculate how many times the timer will be incremented in .05 seconds, a simple multiplication can 

be done: 0 .05 * 921,583 = 46,079.15.  

This tells us that it will take .05 seconds (1/20th of a second) to count from 0 to  

46.0. To work with timers is to control the timers and initialize them.  

 

The TMOD SFR  
TMOD (Timer Mode): The TMOD SFR is used to control the mode of operation of both timers. Each 

bit of the SFR gives the microcontroller specific information concerning how to run a timer. The high 

four bits (bits 4 through 7) relate to Timer 1whereas the low four bits (bits 0 through 3) perform the 

exact same functions, but for timer 0. The modes of operation are: 

 

Timer mode "0" is a 13-bit timer. When the timer is in 13-bit mode, TLx will count from 0 to 31. When 

TLx is incremented from 31, it will "reset" to 0 and increment THx. Thus, effectively, only 13 bits of 

the two timer bytes are being used: bits 0-4 of TLx and bits 0-7 of THx. The timer can only contain 

8192 values. If you set a 13-bit timer to 0, it will overflow back to zero 8192 machine cycles later.  

 

16-bit Time Mode (mode 1)  

 

Timer mode "1" is a 16-bit timer. TLx is incremented from 0 to 255. When TLx is incremented from 

255, it resets to 0 and causes THx to be incremented by 1. Since this is a full 16-bit timer, the timer 

may contain up to 65536 distinct values. If you set a 16-bit timer to 0, it will overflow back to 0 after 

65,536 machine cycles.  

 

 

 

 



8-bit Time Mode (mode 2)  
Timer mode "2" is an 8-bit auto-reload mode.  When a timer is in mode 2, THx holds the "reload value" 

and TLx is the timer itself. Thus, TLx starts counting up. When TLx reaches 255 and is subsequently 

incremented, instead of resetting to 0 (as in the case of modes 0 and 1), it will be reset to the value 

stored in THx. For example, if TH0 holds the value FDh and TL0 holds the value FEh values of TH0 

and TL0 for a few machine cycles:  

 

The value of TH0 never changed. When we use mode 2 you almost always set THx to a known value 

and TLxis the SFR that is constantly incremented. The benefit of auto-reload mode is the timer always 

have a value from 200 to 255. If you use mode 0 or 1, you‘d have  
to check in code to see if the timer had overflowed and, if so, reset the timer to 200. This takes precious 

instructions of execution time to check the value and/or to reload it. When you use mode 2 the 

microcontroller takes care of this. Auto-reload mode is very commonly used for establishing a baud 

rate in Serial Communications. 

 

Split Timer Mode (mode 3)  

 

Timer mode "3" is a split-timer mode. When Timer 0 is placed in mode 3, it essentially becomes two 

separate 8-bit timers. Timer 0 is TL0 and Timer 1 is TH0. Both timers count from 0 to 255 and overflow 

back to 0. All the bits that are related to Timer 1 will now be tied to TH0. While Timer 0 is in split 

mode, the real Timer 1 (i.e. TH1 and TL1) can be put into modes 0, 1 or 2 normally--however, you 

may not start or stop the real timer 1 since the bits that do that are now linked to TH0. The real timer 

1,e, will be incremented every machine cycle always. The only real use in split timer mode is if you 

need to have two separate timers and, additionally, a baud rate generator you can use the real Timer 1 

as a baud rate generator and use TH0/TL0 as two separate timers.  

 

Reading the Timer  

 

There are two common ways of reading the value of a 16-bit timer; which you use depends on your 

specific application. You may either read the actual value of the timer as a 16-bit number, or you may 

simply detect when the timer has overflowed.  

 

 

 

 

 



Reading the value of a Timer  

 

If timer is in an 8-bit mode either 8-bit Auto Reload mode or in split timer mode, you simply read the 

1-byte value of the timer. With a 13-bit or16-bit timer the timer value was  
14/255 (High byte 14, low byte 255) but you read 15/255. 

Serial Port Programming: 8051 Serial Communication  

 

One of the 8051‘s many powerful features -integrated UART, known as a serial port to  

easily read and write values to the serial port instead of turning on and off one of the I/O lines in rapid 

succession to properly "clock out" each individual bit, including start bits, stop bits and parity bits.  

Setting the Serial Port Mode configures it by specifying 8051 how many data bits. 

we want, the baud rate we will be using and how the baud rate will be determined. First, let‘s present 

the "Serial Control" (SCON) SFR and define what each bit of the SFR   

The SCON SFR allows us to configure the Serial Port. The first four bits (bits 4 through 7) are 

configuration bits: Bits SM0 and SM1 is to set the serial mode to a value between 0 and 3, inclusive 

as in table above selecting the Serial Mode selects the mode of operation (8-bit/9-bit, UART or Shift 

Register) and also determines how the baud rate will be calculated. In modes 0 and 2 the baud rate is 

fixed based on the oscillator‘s frequency.  

 

In modes 1 and 3 the baud rate is variable based on how often Timer 1 overflows. The next bit, SM2, 

is a flag for " Multiprocessor communication whenever a byte has been received the 8051 will set the 

"RI" (Receive Interrupt) flag to let the program know that a byte has been received and that it needs to 

be processed. However, when SM2 is set the "RI" flag will only be triggered if the 9th bit received was 

a "1". if SM2 is set and a byte is received whose 9th bit is clear, the RI flag will never be set .You will 

almost always want to clear this bit so that the flag is set upon reception of any character. The next bit, 

REN, is "Receiver Enable." is set indicate to data received via the serial port.  

The last four bits (bits 0 through 3) are operational bits. They are used when actually sending and 

receiving data--they are not used to configure the serial port.  The TB8 bit is used in modes 2 and 3.  

 
 

In modes 2 and 3, a total of nine data bits are transmitted. The first 8 data bits are the 8 bits of the main 

value, and the ninth bit is taken from TB8. If TB8 is set and a value is written to the serial port, the 

data‘s bits will be  written to the serial line followed by a "set" ninth bit. If TB8 is clear the ninth bit 

will be  "clear."  The RB8 also operates in modes 2 and 3and functions essentially the same way as 

TB8, but on the reception side. When a byte is received in modes 2 or 3, a total of nine bits are received. 

In this case, the first eight bits received are the data of the serial byte received and the value of the 

nineth bit received will be placed in RB8.TI means "Transmit Interrupt."  

 

When a program writes a value to the serial port, a certain amount of time will pass before the 

individual bits of the byte are "clocked out" the serial port. If the program were to write another byte 



to the serial port before the first byte was completely output, the data being sent would be garbled. 

Thus, the8051 lets the program know that it has "clocked out" the last byte by setting the TI bit.  

When the TI bit is set, the program may assume that the serial port is "free" and ready to send the next 

byte. Finally, the RI bit means "Receive Interrupt." It functions similarly to the "TI" bit, but it indicates 

that a byte has been received. Whenever the 8051 has received a complete byte it will trigger the RI 

bit to let the program know that it needs to read the value quickly, before another byte is read.  

 

Setting the Serial Port Baud Rate  
 

Once the Serial Port Mode has been configured, the program must configure the serial port‘s  baud 

rate. This only applies to Serial Port modes 1 and 3. The Baud Rate is determined  based on the 

oscillator‘s frequency when in mode 0 and 2. In mode 0, the baud rate is  always the oscillator 

frequency divided by 12. This means if you‘re crystal is 1.059 Mhz, mode 0 baud rate will always be 

921,583 baud. In mode 2 the baud rate is always the oscillator frequency divided by 64, so a 11.059Mhz 

crystal speed will yield a baud rate of172,797.  

 

In modes 1 and 3, the baud rate is determined by how frequently timer 1 overflows. The more 

frequently timer 1 overflows, the higher the baud rate. There are many ways one can cause timer 1 to 

overflow at a rate that determines a baud rate, but the most common method is to put timer 1 in 8-bit 

auto-reload mode (timer mode2) and set a reload value (TH1) that causes Timer 1 to overflow at a 

frequency appropriate to generate a baud rate.  
 

Writing to the Serial Port 

Once the Serial Port has been properly configured as explained above, the serial port is ready to be 

used to send data and receive data. To write a byte to the serial write the value to the SBUF (99h) SFR. 

For example, if you wanted to send the letter "A" to the serial port, it could be accomplished as easily 

as: MOV SBUF, #‘A‘ 

Upon execution of the above instruction the 8051 will begin transmitting the character via the serial 

port. Obviously transmission is not instantaneous--it takes a measureable amount of time to transmit. 

And since the 8051 does not have a serial output buffer we need to be sure that a character is completely 

transmitted before we try to transmit the next character. 

Reading the Serial Port 

Reading data received by the serial port is equally easy. To read a byte from the serial port one just 

needs to read the value stored in the SBUF (99h) SFR after the 8051 has automatically set the RI flag 

in SCON. 

Interrupt Programming:  
 

The following events will cause an interrupt:  

Timer 0 Overflow.  

Timer 1 Overflow.  

Reception/Transmission of Serial Character.  

External Event 0.  

External Event 1.  

 



 

To distinguish between various interrupts and executing different code depending on what interrupt 

was triggered 8051may be jumping to a fixed address when a given interrupt occurs. 

 

If Timer 0 overflows (i.e., the TF0 bit is set), the main program will be temporarily suspended and 

control will jump to 000BH if we have code at address 0003H that handles the situation of Timer 0 

overflowing.  

 

Setting Up Interrupts  

 

By default at power up, all interrupts are disabled. Even if, for example, the TF0 bit is set, the 8051 

will not execute the interrupt. Your program must specifically tell the  
8051 that it wishes to enable interrupts and specifically which interrupts it wishes to enable. Your 

program may enable and disable interrupts by modifying the IE SFR (A8h) 

Each of the 8051‘sinterrupts has its own bit in the IE SFR. You enable a given interrupt by setting the 

corresponding bit. For example, if you wish to enable Timer 1 Interrupt, you would execute either:  

MOV IE,#08h || SETB ET1  

 

Both of the above instructions set bit 3 of IE, thus enabling Timer 1 Interrupt. Once Timer 1  

Interrupt is enabled, whenever the TF1 bit is set, the 8051 will automatically put "on hold" the main 

program and execute the Timer 1 Interrupt Handler at address 001Bh. However, before Timer 1 

Interrupt (or any other interrupt) is truly enabled, you must also set bit 7 of IE.  Bit 7, the Global 

Interrupt Enable/Disable, enables or disables all interrupts simultaneously. That is to say, if bit 7 is 

cleared then no interrupts will occur, even if all the other bits of IE are set. Setting bit 7 will enable all 

the interrupts that have been selected by setting other bits in IE. This is useful in program execution if 

you have time-critical code that needs to execute.  

 

In this case, you may need the code to execute from start to finish without any interrupt getting in the 

way. To accomplish this you can simply clear bit 7 of IE (CLR EA) and then set it after your time 

critical code is done. To enable the Timer 1 Interrupt execute the following two instructions:  

SETB ET1  

SETB EA  

Thereafter, the Timer 1 Interrupt Handler at 01Bh will automatically be called whenever the  

TF1 bit is set (upon Timer 1 overflow).  

 

Polling Sequence  
The 8051 automatically evaluates whether an interrupt should occur after every instruction. When 

checking for interrupt conditions, it checks them in the following order:  



1) External 0 Interrupt  

2) Timer 0 Interrupt  

3) External 1 Interrupt  

4) Timer 1 Interrupt  

5) Serial Interrupt  


Interrupt Priorities 

The 8051 offers two levels of interrupt priority: high and low. By using interrupt priorities you may 

assign higher priority to certain interrupt conditions. For example, you may have enabled Timer 1 

Interrupt which is automatically called every time Timer 1 overflows. Additionally, you may have 

enabled the Serial Interrupt which is called every time a character is received via the serial port. 

However, you may consider that receiving a character is much more important than the timer interrupt. 

In this case, if Timer 1 Interrupt is already executing you may wish that the serial interrupt itself 

interrupts the Timer 1  

Interrupt. When the serial interrupt is complete, control passes back to Timer 1 Interrupt and finally 

back to the main program. You may accomplish this by assigning a high priority to the Serial Interrupt 

and a low priority to the Timer 1 Interrupt. 

Interfacing a Microprocessor to Keyboard  

 

When you press a key on your computer, you are activating a switch. There are many different ways 

of making these switches. An overview of the construction and operation of some of the most common 

types.  

Mechanical key switches: In mechanical-switch keys, two pieces of metal are pushed together when 

you press the key. The actual switch elements are often made of a phosphor-bronze alloy with gold 

platting on the contact areas. The key switch usually contains a spring to return the key to the 

nonpressed position and perhaps a small piece of foam to help damp out bouncing. Some mechanical 

key switches now consist of a molded silicon dome with a small  piece of conductive rubber foam short 

two trace on the printed-circuit board to produce the  key pressed signal. Mechanical switches are 

relatively inexpensive but they have several disadvantages.  First, they suffer from contact bounce. A 

pressed key may make and break contact several  times before it makes solid contact. Second, the 

contacts may become oxidized or dirty with age so they no longer make A dependable connection.  

Higher- quality mechanical switches typically have a rated life time of about 1  million keystrokes. 

The silicone dome type typically last 25 million keystrokes. 

 
Membrane key switches: These switches are really a special type of mechanical  switches. They 

consist of a three-layer plastic or rubber sandwich. The top layer has a conductive line of silver ink 

running under each key position. The bottom layer has a conductive line of silver ink running under 

each column of keys. The key board interfaced is a matrix keyboard. This key board is designed with 

a particular rows and columns. These rows and columns are connected to the microcontroller through 

its ports of the micro controller 8051. We normally use 8*8 matrix key board. So only two ports of 

8051 can be easily connected to the rows and columns of the key board. Whenever a key is pressed, a 

row and a column gets shorted through that pressed key and all the other keys are left open. When a 



key is pressed only a bit in the port goes high which indicates microcontroller that the key is pressed. 

By this high on the bit key in the corresponding column is identified. 

 

Interfacing To Alphanumeric Displays  

 

• To give directions or data values to users, many microprocessor-controlled instruments and 

machines need to display letters of the alphabet and numbers. In systems where a large amount of 

data needs to be displayed a CRT is used to display the data. In system where only a small amount of 

data needs to be displayed, simple digit-type displays are often used.  

• There are several technologies used to make these digit-oriented displays but we are discussing 

only the two major types.  

• These are light emitting diodes (LED) and liquid-crystal displays (LCD).  

• LCD displays use very low power, so they are often used in portable, battery-powered  

instruments. They do not emit their own light, they simply change the reflection of available light. 

Therefore, for an instrument that is to be used in low-light conditions, you have to include a light source 

for LCDs or use LEDs which emit their own light. 

 
Once we get the row next out job is to find out the column of the pressed key. The column is detected 

by contents in the input ports with the help of a counter. The content of the input port is rotated with 

carry until the carry bit is set.  

The contents of the counter is then compared and displayed in the display. This display is designed 

using a seven segment display and a BCD to seven segment decoder IC 7447. The BCD equivalent 

number of counter is sent through output part of 8051 displays the number of pressed key. 

 

Interfacing Analog to Digital Data Converters  

 

• In most of the cases, the PPI 8255 is used for interfacing the analog to digital converters  

with microprocessor. 

• The analog to digital converters is treaded as an input device by the microprocessor, that sends an 

initialising signal to the ADC to start the analogy to digital data conversation process. The start of 

conversation signal is a pulse of a specific duration.  

• The process of analog to digital conversion is a slow process, and the microprocessor has  

to wait for the digital data till the conversion is over. After the conversion is over, the ADC sends end 

of conversion EOC signal to inform the microprocessor that the conversion is over and the result is 

ready at the output buffer of the ADC. These tasks of issuing an SOC pulse to ADC, reading EOC 

signal from the ADC and reading the digital output of the ADC are carried out by the CPU using 

8255 I/O ports.  

• The time taken by the ADC from the active edge of SOC pulse till the active edge of EOC  



signal is called as the conversion delay of the ADC.  

• It may range anywhere from a few microseconds in case of fast ADC to even a few  

hundred milliseconds in case of slow ADCs.  

• The available ADC in the market use different conversion techniques for conversion of analog 

signal to digitals. Successive approximation techniques and dual slope integration techniques are the 

most popular techniques used in the integrated ADC chip.  

• General algorithm for ADC interfacing contains the following steps:  

1. Ensure the stability of analog input, applied to the ADC.  

2. Issue start of conversion pulse to ADC  

3. Read end of conversion signal to mark the end of conversion processes.  

4. Read digital data output of the ADC as equivalent digital output.  

5. Analog input voltage must be constant at the input of the ADC right from the start of conversion 

till the end of the conversion to get correct results. This may be ensured by a sample and hold circuit 

which samples the analog signal and holds it constant for a specific time duration. The 

microprocessor may issue a hold signal to the sample and hold circuit.  

6. If the applied input changes before the complete conversion process is over, the digital equivalent 

of the analog input calculated by the ADC may not be correct. 

 

Stepper Motor Interface  

 

The complete board consists of transformer, control circuit, keypad and stepper motor as shown in 

snap.  

The circuit has inbuilt 5 V power supply so when it is connected with transformer it will give the 

supply to circuit and motor both. The 8 Key keypad is connected with circuit through which user can 

give the command to control stepper motor. The control circuit includes micro controller 89C51, 

indicating LEDs, and current driver chip ULN2003A. One can program the controller to control the 

operation of stepper motor. He can give different commands through keypad like, run clockwise, run 

anticlockwise, increase/decrease RPM, increase/decrease revolutions, stop motor, change the mode, 

etc. Unipolar stepper motor:- unipolar stepper motor has four coils. One end of each coil is tied 

together and it gives common terminal which is always connected with positive terminal of supply. 

The other ends of each coil are given for interface. Specific color code may also be given. Like in my 

motor orange is first coil (L1), brown is second (L2), yellow is third (L3), black is fourth (L4) and 

red for common terminal.  

By means of controlling a stepper motor operation we can  

1. Increase or decrease the RPM (speed) of it  

2. Increase or decrease number of revolutions of it  

3. Change its direction means rotate it clockwise or anticlockwise  

To vary the RPM of motor we have to vary the PRF (Pulse Repetition Frequency). Number of 

applied pulses will vary number of rotations and last to change direction we have to change pulse 

sequence.  

So all these three things just depends on applied pulses. Now there are three different modes to rotate 

this motor  

 

1. Single coil excitation  

2. Double coil excitation  

3. Half step excitation 

 

The circuit consists of very few components. The major components are 7805, 89C51 and  

ULN2003A.  



 

 

Connections:-  

 

1. The transformer terminals are given to bridge rectifier to generate rectified DC.  

2. It is filtered and given to regulator IC 7805 to generate 5 V pure DC. LED indicates supply is ON.  

3. All the push button micro switches J1 to J8 are connected with port P1 as shown to form serial 

keyboard.  

4. 12 MHz crystal is connected to oscillator terminals of 89C51 with two biasing capacitors. 

5. All the LEDs are connected to port P0 as shown  

6. Port P2 drives stepper motor through current driver chip ULN2003A.  

The common terminal of motor is connected to Vcc and rest all four terminals are connected to port 

P2 pins in sequence through ULN chip. 

 



UNIT-V 

Pre - requisite:  

 Contrast the 8086 and 80186 microprocessors with earlier Intel microprocessors 

Outcomes 

 To get exposed to advance RSIC processors and design ARM microcontroller based systems 

 

INTRODUCTION TO THE 80286 

The 80286 microprocessor is an advanced version of the 8086 microprocessor that was designed for 

multiuser and multitasking environments. The 80286 addresses 16M bytes of physical memory and 1G 

bytes of virtual memory by using its memory-management system. This section of the text introduces the 

80286 microprocessor, which finds use in earlier AT-style personal computers that once pervaded the 

computer market and still find some applications. The 80286 is basically an 8086 that is optimized to 

execute instructions in fewer clocking periods than the 8086. The 80286 is also an enhanced version of the 

8086 because it contains a memory manager. At this time, the 80286 no longer has a place in the personal 

computer system, but it does find applications in control systems as an embedded controller. 

 

 
As a careful examination of the block diagram reveals, address pins A23–A0, BUSY, CAP, ERROR PEREQ and are 

new or additional pins that do not appear on the 8086 microprocessor. The BUSY ERROR PEREQ and PEACK 

signals are used with the microprocessor extension or coprocessor, of which the 80287 is an example. (Note that the 

TEST pin is now referred to as the BUSY pin.) The address bus is now 24 bits wide to accommodate the 16M bytes 

of physical memory. The CAP pin is connected to a 0.047 μF, 20% capacitor that acts as a 12 V filter and connects to 

ground. The pin-outs of the 8086 and 80286 are illustrated in Figure 16–30 for comparative purposes. Note that the 

80286 does not contain a multiplexed address/data bus. 

 

In 80286 operates in both the real and protected modes. In the real mode, the 80286 addresses a 1M-byte memory 

address space and is virtually identical to the 8086. In the protected mode, the 80286 addresses a 16M-byte memory 

space.The basic 80286 microprocessor-based system. Notice that the clock is provided by the 82284 clock generator 

(similar to the 8284A) and the system control signals are provided by the 82288 system bus controller (similar to the 

8288). Also, note the absence of the latch circuits used to demultiplex the 8086 address/data bus. 

 



 
Additional Instructions 
 

The 80286 has even more instructions than its predecessors. These extra instructions control the virtual memory 

system through the memory manager of the 80286. Table 16–9 lists the additional 80286 instructions with a comment 

about the purpose of each instruction. These instructions are the only new instructions added to the 80286. Note that 

the 80286 contains the new instructions added to the 80186/80188 such as INS, OUTS, BOUND, ENTER, LEAVE, 

PUSHA, POPA, and the immediate multiplication and immediate shift and rotate counts. 

 

CLTS The clear task-switched flag (CLTS) instruction clears the TS (task-switched) flag bit to a logic 0. If the TS 

flag bit is a logic 1 and the 80287 numeric coprocessor is used by the task, an interrupt occurs (vector type 7). This 

allows the function of the coprocessor to be emulated with software. The CLTS instruction is used in a system and is 

considered a privileged instruction because it can be executed only in the protected mode at privilege level 0. There 

is no set TS flag instruction; this is accomplished by writing a logic 1 to bit position 3 (TS) of the machine status word 

(MSW) by using the LMSW instruction. 

 

CLTS The clear task-switched flag (CLTS) instruction clears the TS (task-switched) flag bit to a logic 0. If the TS 

flag bit is a logic 1 and the 80287 numeric coprocessor is used by the task, an interrupt occurs (vector type 7). This 

allows the function of the coprocessor to be emulated with software. The CLTS instruction is used in a system 

and is considered a privileged instruction because it can be executed only in the protected mode at privilege level 0. 

There is no set TS flag instruction; this is accomplished by writing a logic 1 to bit position 3 (TS) of the machine 

status word (MSW) by using the LMSW instruction. 

 

LAR The load access rights (LAR) instruction reads the segment descriptor and places a copy of the access rights 

byte into a 16-bit register. An example is the LAR AX,BX instruction that loads AX with the access rights byte from 

the descriptor selected by the selector value found in BX. This instruction is used to get the access rights so that it can 

be checked before a program uses the segment of memory described by the descriptor. 

 

LSL The load segment limit (LSL) instruction loads a user-specified register with the segment limit. For example, 

the LSL AX,BX instruction loads AX with the limit of the segment described by the descriptor selected by the selector 

in BX. This instruction is used to test the limit of a segment. 

 

ARPL The adjust requested privilege level (ARPL) instruction is used to test a selector so that the privilege level 

of the requested selector is not violated. An example is ARPL AX,CX: AX contains the requested privilege level and 

CX contains the selector value to be used to access a descriptor. If the requested privilege level is of a lower priority 

than the descriptor under test, the zero flag is set. This may require that a program adjust the requested privilege level 

or indicate a privilege violation. 



 

VERR The verify for read access (VERR) instruction verifies that a segment can be read. Recall from Chapter 1 that 

a code segment can be read-protected. If the code segment can be read, the zero flag bit is set. The VERR AX 

instruction tests the descriptor selected by the AX register. 

 

A virtual memory machine is a machine that maps a larger memory space (1G bytes for the 80286) into a much 

smaller physical memory space (l6M bytes for the 80286), which allows a very large system to execute in smaller 

physical memory systems. This is accomplished by spooling the data and programs between the fixed disk memory 

system and the physical memory. Addressing a 1G-byte memory system is accomplished by the descriptors in the 

80286 microprocessor. Each 80286 descriptor describes a 64K-byte memory segment and the 80286 allows 16K 

descriptors. This (64K *16K) allows a maximum of 1G bytes of memory to be described for the system. 

 

Advanced coprocessor Architectures- 486 
 

The 80486 microprocessor is a highly integrated device, containing well over 1.2 million transistors. Located within 

this device circuit are a memory-management unit (MMU), a complete numeric coprocessor that is compatible with 

the 80387, a high-speed level 1 cache memory that contains 8K bytes of space, and a full 32-bit microprocessor that 

is upward-compatible with the 80386 microprocessor. The 80486 is currently available as a 25 MHz, 33 MHz, 50 

MHz, 66 MHz, or 100 MHz device. Note that the 66 MHz version is double-clocked and the 100 MHz version is 

triple-clocked. In 1990, Intel demonstrated a 100 MHz version (not double-clocked) of the 80486 for Computer Design 

magazine, but it has yet to be released. Advanced Micro Devices (AMD) has produced a 40 MHz version that is also 

available in an 80 MHz (double-clocked) and a 120 MHz (triple-clocked) form. The 80486 is available as an 80486DX 

or an 80486SX. The only difference between these devices is that the 80486SX does not contain the numeric 

coprocessor, which reduces its price. The 80487SX numeric coprocessor is available as a separate component for the 

80486SX microprocessor. 

 

The architecture of the 80486DX is almost identical to the 80386. Added to the 80386 architecture inside the 80486DX 

is a math coprocessor and an 8K-byte level 1 cache memory. The 80486SX is almost identical to an 80386 with an 

8K-byte cache, but no numeric coprocessor. The only new flag bit is the AC (alignment check), used to indicate that 

the microprocessor has accessed a word at an odd address or a double word stored at a non-double word boundary. 

Efficient software and execution require that data be stored at word or double word boundaries. 

 

 
 

 



The memory system for the 80486 is identical to the 80386 microprocessor. The 80486 contains 4G bytes of memory, 

beginning at location 00000000H and ending at location FFFFFFFFH. The major change to the memory system is 

internal to the 80486 in the form of an 8K-byte cache memory, which speeds the execution of instructions and the 

acquisition of data. Another addition is the parity checker/generator built into the 80486 microprocessor. commonly 

used in a program. About the only way that these efficient instructions are slowed is when the microprocessor must 

fill a line in the cache. Data are also stored in the cache, but it has less of an impact on the execution speed of a program 

because data are not referenced repeatedly as many portions of a program are. Control register 0 (CR0) is used to 

control the cache with two new control bits not present in the 80386 microprocessor.  

 

The CD (cache disable) and NW (noncache write-through) bits are new to the 80486 and are used to control the 8K-

byte cache. If the CD bit is a logic 1, all cache operations are inhibited. This setting is used only for debugging software 

and normally remains cleared. The NW bit is used to inhibit cache write-through operations. As with CD, cache write-

through is inhibited only for testing. For normal program operation, CD = 0 and NW = 0. Because the cache is new to 

the 80486 microprocessor and the cache is filled by using burst cycles not present on the 80386, some detail is required 

to understand bus-filling cycles. 

 

When a bus line is filled, the 80486 must acquire four 32-bit numbers from the memory system to fill a line in the 

cache. Filling is accomplished with a burst cycle. The burst cycle is a special memory where four 32-bit numbers are 

fetched from the memory system in five clocking periods. This assumes that the speed of the memory is sufficient and 

that no wait states are required. If the clock frequency of the 80486 is 33 MHz, we can fill a cache line in 167 ns, 

which is very efficient considering that a normal, nonburst 32-bit memory read operation requires two clocking 

periods. 

 

Control register zero (CR0) for the 80486 microprocessor. 

 

 
The 80486 33 MHz, 66 MHz, and 100 MHz processors all access bus data at a 33 MHz rate. In other words, the 

microprocessor may operate at 100 MHz, but the system bus operates at 33 MHz. Notice that the nonburst access 

timing for the 33 MHz system bus allows 60 ns - 24 ns = 36 ns. It is obvious that wait states are required for operation 

with standard DRAM memory device. Access time using a 20 MHz version of the 80486 for the second and subsequent 

double words is 50 ns - 28 ns - 5 ns, or 17 ns, assuming no delays in the system. To use burst mode transfers, we need 

high-speed memory. Because DRAM memory access times are 40 ns at best, we are forced to use SRAM for burst 

cycle transfers. The 33 MHz system allows an access time of 30 ns - 19 ns - 5 ns, or 6 ns for the second and subsequent 

bytes. If an external counter is used in place of address bits A2 and A3, the 19 ns can be eliminated and the access 

time becomes 30 ns - 5 ns, or 25 ns, which is enough time for even the slowest SRAM connected to the system as a 

cache. 

 

The PWT controls how the cache functions for a write operation of the external cache memory; it does not control 

writing to the internal cache. The logic level of this bit is found on the PWT pin of the 80486 microprocessor. 

Externally, it can be used to dictate the write-through policy of the external cache. The PCD bit controls the on-chip 

cache. If the PCD = 0, the on-chip cache is enabled for the current page of memory. Note that 80386 page table entries 

place a logic 0 in the PCD bit position, enabling caching. If PCD = 1, the on-chip cache is disabled. Caching is 

disabled, regardless of the condition of , CD, and NW. 

 

 

 

 

 

 

 

 

 



Pentium 

 

Before the Pentium or any other microprocessor can be used in a system, the function of each pin must be understood. 

This section of the chapter details the operation of each pin, along with the external memory system and I/O structures 

of the Pentium microprocessor. As with earlier versions of the Intel family of microprocessors, the early versions of 

the Pentium require a single +5.0 V power supply for operation. The power supply current averages 3.3 A for the 66 

MHz version of the Pentium, and 2.91 A for the 60 MHz version. Because these currents are significant, so are the 

power dissipations of these microprocessors: 13 W for the 66 MHz version and 11.9 W for the 60 MHz version. The 

current versions of the Pentium, 90 MHz and above, use a 3.3 V power supply with reduced current consumption. At 

present, a good heat sink with considerable airflow is required to keep the Pentium cool. The Pentium contains multiple 

VCC and VSS connections that must all be connected to +5.0 V or +3.3 V and ground for proper operation. Some of 

the pins are labeled N/C (no connection) and must not be connected. The latest versions of the Pentium have been 

improved to reduce the power dissipation. For example, the 233 MHz Pentium requires 3.4 A or current, which is only 

slightly more than the 3.3 A required by the early 66 MHz version. 

 

 
 

Each Pentium output pin is capable of providing 4.0 mA of current at a logic 0 level and 2.0 mA at a logic 1 level. 

This represents an increase in drive current, compared to the 2.0 mA available on earlier 8086, 8088, and 80286 output 

pins. Each input pin represents a small load requiring only 15 μA of current. In some systems, except the smallest, 

these current levels require bus buffers. 

The memory system for the Pentium microprocessor is 4G bytes in size, just as in the 80386DX and 80486 

microprocessors. The difference lies in the width of the memory data bus. The Pentium uses a 64-bit data bus to 

address memory organized in eight banks that each contain 512M bytes of data. See Figure 18–2 for the organization 

of the Pentium physical memory system. The Pentium memory system is divided into eight banks where each bank 

stores byte-wide data with a parity bit. The Pentium, like the 80486, employs internal parity generation and checking 

logic for the memory system’s data bus information. (Note that most Pentium systems do not use parity checks, 

because ECC is available.) The 64-bit-wide memory is important to double-precision floating-point data. Recall that 

a double-precision floating-point number is 64 bits wide. Because of the change to a 64-bit-wide data bus, the Pentium 

is able to retrieve floating- point data with one read cycle, instead of two as in the 80486. This causes the Pentium to 

function at a higher throughput than an 80486. As with earlier 32-bit Intel microprocessors, the memory system is 

numbered in bytes, from byte 00000000H to byte FFFFFFFFH. Memory selection is accomplished with the bank 

enable signals ( – ). These separate memory banks allow the Pentium to access any single byte, word, doubleword, or 

quadword with one memory transfer cycle. As with earlier memory selection logic, eight separate write 

strobes are generated for writing to the memory system. 

 

 

 



 

The Pentium processor has two primary operating modes - 

 

Protected Mode - In this mode all instructions and architectural features are available, providing the highest 

performance and capability. This is the recommended mode that all new applications and operating systems should 

target. 

 

Real-Address Mode - This mode provides the programming environment of the Intel 8086 processor, with a few 

extensions. Reset initialization places the processor in real mode where, with a single instruction, it can switch to 

protected mode. 

 

The Pentium's basic integer pipeline is five stages long, with the stages broken down as follows: 

 

Pre-fetch/Fetch: Instructions are fetched from the instruction cache and aligned in pre-fetch buffers for decoding. 

Decode1: Instructions are decoded into the Pentium's internal instruction format. Branch prediction also takes place 

at this stage. 

Decode2: Same as above, and microcode ROM kicks in here, if necessary. Also, address computations take place at 

this stage. 

Execute: The integer hardware executes the instruction. 

Write-back: The results of the computation are written back to the register file. 

 

COMPARISON OF RISC AND  CISC 

 
RISC is stand for Reduced Instruction Set Computer. Nowadays mostly Mobile Phones Based on RISC architecture 

Like MIPS and ARM etc. RISC has simple and small Instruction. RISC chips Comes around the mid 80’s because the 

reaction of CISC chips. The philosophy behind that almost no one use complex instructions and mostly people uses 

compilers which never use complex instructions. So for Apple uses RISC chips [14-20]. So therefore simple and faster 

instructions are better than large complex and slower (CISC) instructions. However, RISC required more instruction 

to complete a task than CISC. An advantage of RISC is that because it more simple instructions. RISC chips require 

less transistors which makes easier to design and cheaper to produce. So now it easier to write powerful optimal 

compilers since fewer instructions exists. 

 

Properties of CISC: 

 

1. Some simple and very complex instructions 

2. In CISC instructions take more than 1 clock per 

Cycle to execute 

3. Variable size instructions 

4. No pipelining 

5. Few registers 

6. Not a load and store machine 

7. For Compilation not so good in term of speed 

8. Emphasis of Hardware 

9. Transistors are used for storing complex Instructions 

 

Properties of RISC: 

 

1. Small and simple instructions 

2. In RISC Instructions are execute in one clock cycle per Instructions 

3. All instructions have the same length 

4. Load and Store architecture implemented due to the desired single-cycle operation 

5. Have Pipelining 

6. More register than CISC 

7. Optimal compilation speed as compared to CISC 



8. Emphasis on software 

9. Compare to CISC a RISC Spends more transistors on memory registers 

 

Advantages of RISC: 

 

Implementation with simple instructions provides many advantages over implementing as compared to 

CISC Processors. Simple instruction set allow for pipeline superscalar designing RISC processor often 

achieved two to four times performance of CISC processors using [21-27] comparable semiconductor 

technology and similar clock rates. Simple hardware. Because instructions set of a (RISC) processor is so 

simple, it uses up much less chips spaces and extra functions i.e. memory management unit or floating 

point arithmetic units, can also be placed on the similar chip. Smaller chips allows a semiconductor 

manufacturers to placed more parts on single silicon wafer which can lower per chips cost dramatically and 

have short design cycles. Since RISC processors are simpler than corresponding CISC processors they can 

be design more quickly and take advantage of other technological [28-33] developments sooner than 

corresponds CISC design leading to great leaps in performance between generations. 

 

Advantages of CISC: 

 

At the time of their initial development CISC machines use technologies to optimize the performance of a 

computer. Microprogramming is easy as assembly Programming language to implement and less expensive 

than hardwiring a control unit. The ease of micro coding newly instructions allows designers to make 

(CISC) machines upwardly compatible new computer run the same programs as early computers because 

the new computers would contained a superset of instructions of earlier computers. As each instruction 

became more capable less instruction used to implement the given task. This made efficient uses of the 

relative slow main 
 

ARM architecture 

 

The microcontroller market is vast, with more than 20 billion devices per year estimated to be shipped 

in 2010. A bewildering array of vendors, devices, and architectures is competing in this market. The 

requirement for higher performance microcontrollers has been driven globally by the industry’s changing 

needs; for example, microcontrollers are required to handle more work without increasing a product’s 

frequency or power. In addition, microcontrollers are becoming increasingly connected, whether 

by Universal Serial Bus (USB), Ethernet, or wireless radio, and hence, the processing needed to support 

these communication channels and advanced peripherals are growing. Similarly, general application 

complexity is on the increase, driven by more sophisticated user interfaces, multimedia requirements, 

system speed, and convergence of functionalities. 



 
 

Microcontrollers based on the Cortex-M3 processor already compete head-on with devices based 

on a wide variety of other architectures. Designers are increasingly looking at reducing the system cost, 

as opposed to the traditional device cost. As such, organizations are implementing device aggregation, 

whereby a single, more powerful device can potentially replace three or four traditional 8-bit devices. 

Other cost savings can be achieved by improving the amount of code reuse across all systems. 

Because Cortex-M3 processor-based microcontrollers can be easily programmed using the C language 

and are based on a well-established architecture, application code can be ported and reused easily, 

reducing development time and testing costs. 

 
It is worthwhile highlighting that the Cortex-M3 processor is not the first ARM processor to be used to 

create generic microcontrollers. The venerable ARM7 processor has been very successful in this market, 



with partners such as NXP (Philips), Texas Instruments, Atmel, OKI, and many other vendors delivering 

robust 32-bit Microcontroller Units (MCUs). The ARM7 is the most widely used 32-bit embedded 

processor in history, with over 1 billion processors produced each year in a huge variety of electronic 

products, from mobile phones to cars. 

 

The Cortex-M3 processor builds on the success of the ARM7 processor to deliver devices that are 

significantly easier to program and debug and yet deliver a higher processing capability. Additionally, the 

Cortex-M3 processor introduces a number of features and technologies that meet the specific requirements 

of the microcontroller applications, such as non maskable interrupts for critical tasks, highly deterministic 

nested vector interrupts, atomic bit manipulation, and an optional Memory Protection Unit (MPU). These 

factors make the Cortex-M3 processor attractive to existing ARM processor users as well as many new 

users considering use of 32-bit MCUs in their products. 

 

Cortex-M3 Processor Applications 

 

With its high performance and high code density and small silicon footprint, the Cortex-M3 processor 

is ideal for a wide variety of applications: 

 

• Low-cost microcontrollers: The Cortex-M3 processor is ideally suited for low-cost microcontrollers, 

which are commonly used in consumer products, from toys to electrical appliances. It is a highly 

competitive market due to the many well-known 8-bit and 16-bit microcontroller products on 

the market. Its lower power, high performance, and ease-of-use advantages enable embedded 

developers to migrate to 32-bit systems and develop products with the ARM architecture. 

 

• Automotive: Another ideal application for the Cortex-M3 processor is in the automotive industry. 

The Cortex-M3 processor has very high-performance efficiency and low interrupt latency, allowing 

it to be used in real-time systems. The Cortex-M3 processor supports up to 240 external vectored 

interrupts, with a built-in interrupt controller with nested interrupt supports and an optional MPU, 

making it ideal for highly integrated and cost-sensitive automotive applications. 

 

•Data communications: The processor’s low power and high efficiency, coupled with instructions 

in Thumb-2 for bit-field manipulation, make the Cortex-M3 ideal for many communications 

applications, such as Bluetooth and ZigBee. 

 

• Industrial control: In industrial control applications, simplicity, fast response, and reliability are 

key factors. Again, the Cortex-M3 processor’s interrupt feature, low interrupt latency, and enhanced 

fault-handling features make it a strong candidate in this area. 

 

• Consumer products: In many consumer products, a high-performance microprocessor (or several of 

them) is used. The Cortex-M3 processor, being a small processor, is highly efficient and low in power and 

supports an MPU enabling complex software to execute while providing robust memory protection. 

 

 

 

 

 

 

 

 

 

 



CPU: Programming input and output: 

 

 
  

 

                        The basic techniques for I/O programming can be understood relatively independent of the 

instruction set. In this section, we cover the basics of I/O programming and place them in the contexts of 

both the ARM and C55x.We begin by discussing the basic characteristics of I/O devices so that we can 

understand the requirements they place on programs that communicate with them. 

 

1. Input and Output Devices: 

 

                        Input and output devices usually have some analog or non electronic component for instance, 

a disk drive has a rotating disk and analog read/write electronics. But the digital logic in the device that is 

most closely connected to the CPU very strongly resembles the logic you would expect in any computer 

system. 

 

                        The interface between the CPU and the device’s internals (e.g.,the rotating disk and 

read/write electronics in a disk drive) is a set of registers. The CPU talks to the device by reading and 

writing the registers.  

  

Data registers hold values that are treated as data by the device, such as the   data read or written by a disk. 

Status registers provide information about the device’s operation, such as whether the current transaction 

has completed. Some registers may be read-only, such as a status register that indicates when the device is 

done, while others may be readable or writable. 

 

2. Input and Output Primitives: 

 

                        Microprocessors can provide programming support for input and output in two ways: I/O 

instructions and memory-mapped I/O Some architectures, such as the Intel x86, provide special instructions 

(in and out in the case of the Intel x86) for input and output. These instructions provide a separate address 

space for I/O devices .But the most common way to implement I/O is by memory mapping even CPUs that 

provide I/O instructions can also implement memory-mapped I/O.As the name implies, memory-mapped 

I/O provides addresses for the registers in each I/O device. Programs use the CPU’s normal read and write 

instructions to communicate with the devices. 

 

3. Busy-Wait I/O: 

 

The most basic way to use devices in a program is busy-wait I/O. Devices are typically slower than the 

CPU and may require many cycles to complete an operation. If the CPU is performing multiple operations 

on a single device, such as writing several characters to an output device, then it must wait for one operation 



to complete before starting the next one. (If we try to start writing the second character before the device 

has finished with the first one, for example, the device will probably never print the first character.) Asking 

an I/O device whether it is finished by reading its status register is often called polling. 

 

Supervisor Mode: 

 

As will become clearer in later chapters, complex systems are often implemented as several programs that 

communicate with each other. These programs may run under the command of an operating system. It may 

be desirable to provide hardware checks to ensure that the programs do not interfere with each other—for 

example, by erroneously writing into a segment of memory used by another program. Software debugging 

is important but can leave some problems in a running system; hardware checks ensure an additional level 

of safety. 

 

In such cases it is often useful to have a supervisor mode provided by the CPU. Normal programs run in 

user mode. The supervisor mode has privileges that user modes do not. Control of the memory management 

unit (MMU) is typically reserved for supervisor mode to avoid the obvious problems that could occur when 

program bugs cause inadvertent changes in the memory management registers. 

 

Not all CPUs have supervisor modes. Many DSPs, including the C55x, do not provide supervisor modes. 

The ARM, however, does have such a mode. The ARM instruction that puts the CPU in supervisor mode 

is called SWI: 

 

SWI CODE_1 

 

It can, of course, be executed conditionally, as with any ARM instruction. SWI causes the CPU to go into 

supervisor mode and sets the PC to 0x08.The argument to SWI is a 24-bit immediate value that is passed 

on to the supervisor mode code; it allows the program to request various services from the supervisor mode. 

 

In supervisor mode, the bottom 5 bits of the CPSR are all set to 1 to indicate that the CPU is in supervisor 

mode. The old value of the CPSR just before the SWI is stored in a register called the saved program status 

register (SPSR). There are in fact several SPSRs for different modes; the supervisor mode SPSR is referred 

to as SPSR_svc. To return from supervisor mode, the supervisor restores the PC from register r14 and 

restores the CPSR from the SPSR_svc. 

 

Exceptions: 

                        An exception is an internally detected error. A simple example is division by zero. One way 

to handle this problem would be to check every divisor before division to be sure it is not zero, but this 

would both substantially increase the size of numerical programs and cost a great deal of CPU time 

evaluating the divisor’s value. 

 

                        The CPU can more efficiently check the divisor’s value during execution. Since the time at 

which a zero divisor will be found is not known in advance, this event is similar to an interrupt except that 

it is generated inside the CPU. The exception mechanism provides a way for the program to react to such 

unexpected events. 

                        Just as interrupts can be seen as an extension of the subroutine mechanism, exceptions are 

generally implemented as a variation of an interrupt. Since both deal with changes in the flow of control of 

a program, it makes sense to use similar mechanisms. However, exceptions are generated internally. 

                        

 Exceptions in general require both prioritization and vectoring. Exceptions must be prioritized because a 

single operation may generate more than one exception for example, an illegal operand and an illegal 

memory access.The priority of exceptions is usually fixed by the CPU architecture. Vectoring provides a 



way for the user to specify the handler for the exception condition. The vector number for an exception is 

usually predefined by the architecture; it is used to index into a table of exception handlers. 

 

Traps: 

                        A trap, also known as a software interrupt, is an instruction that explicitly generates an 

exception condition. The most common use of a trap is to enter supervisor mode. 

 

                        The entry into supervisor mode must be controlled to maintain security—if the interface 

between user and supervisor mode is improperly designed, a user program may be able to sneak code into 

the supervisor mode that could be executed to perform harmful operations. 

 

                        The ARM provides the SWI interrupt for software interrupts. This instruction causes the 

CPU to enter supervisor mode. An opcode is embedded in the instruction that can be read by the handler. 

 

CO-PROCESSORS: 

 

CPU architects often want to provide flexibility in what features are implemented in the CPU. One way to 

provide such flexibility at the instruction set level is to allow co-processors, which are attached to the CPU 

and implement some of the instructions. For example, floating-point arithmetic was introduced into the 

Intel architecture by providing separate chips that implemented the floating-point instructions. 

 

To support co-processors, certain opcodes must be reserved in the instruction set for co-processor 

operations. Because it executes instructions, a co-processor must be tightly coupled to the CPU. When the 

CPU receives a co-processor instruction, the CPU must activate the co-processor and pass it the relevant 

instruction. Co-processor instructions can load and store co-processor registers or can perform internal 

operations. The CPU can suspend execution to wait for the co-processor instruction to finish; it can also 

take a more superscalar approach and continue executing instructions while waiting for the co-processor to 

finish. 

 

A CPU may, of course, receive co-processor instructions even when there is no coprocessor attached. Most 

architectures use illegal instruction traps to handle these situations. The trap handler can detect the co-

processor instruction and, for example, execute it in software on the main CPU. Emulating co-processor 

instructions in software is slower but provides compatibility. 

 

The ARM architecture provides support for up to 16 co-processors. Co-processors are able to perform load 

and store operations on their own registers. They can also move data between the co-processor registers 

and main ARM registers. 

 

An example ARM co-processor is the floating-point unit. The unit occupies two co-processor units in the 

ARM architecture, numbered 1 and 2, but it appears as a single unit to the programmer. It provides eight 

80-bit floating-point data registers, floating-point status registers, and an optional floating-point status 

register. 

 

MEMORY SYSTEM MECHANISMS: 

 

                        Modern microprocessors do more than just read and write a monolithic memory. 

Architectural features improve both the speed and capacity of memory systems. Microprocessor clock rates 

are increasing at a faster rate than memory speeds, such that memories are falling further and further behind 

microprocessors every day. As a result, computer architects resort to caches to increase the average 

performance of the memory system. 

 



                        Although memory capacity is increasing steadily, program sizes are increasing as well, and 

designers may not be willing to pay for all the memory demanded by an application. Modern 

microprocessor units (MMUs) perform address translations that provide a larger virtual memory space in a 

small physical memory. In this section, we review both caches and MMUs. 

 

1. Caches: 

                       Caches are widely used to speed up memory system performance. Many microprocessor 

architectures include caches as part of their definition. 

 

                        The cache speeds up average memory access time when properly used. It increases the 

variability of memory access times accesses in the cache will be fast, while access to locations not cached 

will be slow. This variability in performance makes it especially important to understand how caches work 

so that we can better understand how to predict cache performance and factor variabilities into system 

design. 

                       A cache is a small, fast memory that holds copies of some of the contents of main memory. 

Because the cache is fast, it provides higher-speed access for the CPU; but since it is small, not all requests 

can be satisfied by the cache, forcing the system to wait for the slower main memory. Caching makes sense 

when the CPU is using only a relatively small set of memory locations at any one time; the set of active 

locations is often called the working set. 

 

 

                        The cache controller sends a memory request to the cache and main memory. If the requested 

location is in the cache, the cache controller forwards the location’s contents to the CPU and aborts the 

main memory request; this condition is known as a cache hit. 

 

                        If the location is not in the cache, the controller waits for the value from main memory and 

forwards it to the CPU; this situation is known as a cache miss. 

 
We can classify cache misses into several types depending on the situation that generated them: 

 

Even before we consider ways to implement caches, we can write some basic formulas for memory system 

performance. Let h be the hit rate, the probability that a given memory location is in the cache. It follows 

that 1_h is the miss rate, or the probability that the location is not in the cache. Then we can compute the 

average memory access time as 

 

                        where tcache is the access time of the cache and tmain is the main memory access time. The 

memory access times are basic parameters available from the memory manufacturer. 

 

                        The hit rate depends on the program being executed and the cache organization, and is 

typically measured using simulators. The best-case memory access time (ignoring cache controller 

overhead) is tcache, while the worst-case access time is tmain. Given that tmain is typically 50–60 ns for 

DRAM, while tcache is at most a few nanoseconds, the spread between worst-case and best-case memory 

delays is substantial. 



 

                        where tcache is the access time of the cache and tmain is the main memory access time. The 

memory access times are basic parameters available from the memory manufacturer. The hit rate depends 

on the program being executed and the cache organization, and is typically measured using simulators. 

The best-case memory access time (ignoring cache controller overhead) is tcache, while the worst-case 

access time is tmain. Given that tmain is typically 50–60 ns for DRAM,while tcache is at most a few 

nanoseconds, the spread between worst-case and best-case memory delays is substantial. 

                        Modern CPUs may use multiple levels of cache as shown in Figure 1.20. The first-level 

cache (commonly known as L1 cache) is closest to the CPU, the second-level cache (L2 cache) feeds the 

first-level cache, and so on.The second-level cache is much larger but is also slower. If h1 is the first-level 

hit rate and h2 is the rate at which access hit the second-level cache but not the first-level cache, then the 

average access time for a two-level cache system,As the program’s working set changes, we expect 

locations to be removed from the cache to make way for new locations. When set-associative caches are 

used, we have to think  about  what         happens when      we  throw   out a value  from the cache to make 

room for a new  value. 

 

                        We do not have this problem in direct-mapped caches because every location maps onto a 

unique block, but in a set-associative cache we must decide which set will have its block  thrown out to 

make  way  for the  new block. 

        One possible replacement policy is least recently used (LRU), that is, throw out the block that has been 

used farthest in the past. We can add relatively small amounts of hardware to the cache to keep track of the 

time since the last access for each block. Another policy is random replacement, which requires even less 

hardware to implement. 

 

         The simplest way to implement a cache is a direct-mapped cache, as shown in Figure 1.20. The cache 

consists of cache blocks, each of which includes a tag to show which memory location is represented by 

this block, a data field holding the contents of that memory, and a valid tag to show whether the contents 

of this cache block are valid. An address is divided into three sections. 

 

The index  is used to select  which cache block  to check. The tag is compared against the tag value in the 

block selected by the index. If the address tag matches the tag value in the block, that block includes the 

desired memory location. 

 

If the length of the data field is longer than the minimum addressable unit, then the lowest bits of the address 

are used as an offset to select the required value from the data field. Given the structure of the cache, there 

is only one block that must be checked to see whether a location is in the cache—the index uniquely 

determines that block. If the access is a hit, the data value is read from the cache. 

 

                        Writes are slightly more complicated than reads because we have to update main memory 

as well as the cache. There are several methods by which we can do this. The simplest scheme is known as 

write-through—every write changes both the cache and the corresponding main memory location (usually 

through a write buffer). 

 

                            This scheme ensures that the cache and main memory are consistent, but may generate 

some additional main memory traffic. We can reduce the number of times we write to main memory by 

using a write-back policy: If we write only when we remove a location from the cache, we eliminate the 

writes when a location is written several times before it is removed from the cache. 

 



 
 

The direct-mapped cache is both fast and relatively low cost, but it does have limits in its caching power 

due to its simple scheme for mapping the cache onto main memory. Consider a direct-mapped cache with 

four blocks, in which locations 0, 1, 2, and 3 all map to different blocks. But locations 4, 8, 12…all map to 

the same block as location 0; locations 1, 5, 9, 13…all map to a single block; and so on. If two popular 

locations in a program happen to map onto the same block, we will not gain the full benefits of the cache. 

As seen in Section 5.6, this can create program performance problems. 

 

                  The limitations of the direct-mapped cache can be reduced by going to the set-associative cache 

structure shown in Figure 1.21.A set-associative cache is characterized by the number of banks or ways it 

uses, giving an n-way set-associative cache. 

 

                  A set is formed by all the blocks (one for each bank) that share the same index. Each set is 

implemented with a direct-mapped cache. A cache request is broadcast to all banks simultaneously. If any 

of the sets has the location, the cache reports a hit.  

 

                            Although memory locations map onto blocks using the same function, there are n separate 

blocks for each set of locations. Therefore, we can simultaneously cache several locations that happen to 

map onto the same cache block. The set associative cache structure incurs a little extra overhead and is 

slightly slower than a direct-mapped cache, but the higher hit rates that it can provide often compensate. 

 

                            The set-associative cache generally provides higher hit rates than the direct mapped cache 

because conflicts between a small number of locations can be resolved within the cache. The set-associative 

cache is somewhat slower, so the CPU designer has to be careful that it doesn’t slow down the CPU’s cycle 

time too much. A more important problem with set-associative caches for embedded program. 

 
 

 

Design is predictability. Because the time penalty for a cache miss is so severe, we often want to make sure 

that critical segments of our programs have good behavior in the cache. It is relatively easy to determine 

when two memory locations will conflict in a direct-mapped cache. 



 

                        Conflicts in a set-associative cache are more subtle, and so the behavior of a set-associative 

cache is more difficult to analyze for both humans and programs. 

 

CPU PERFORMANCE: 

 

Now that we have an understanding of the various types of instructions that CPUs can execute, we can 

move on to a topic particularly important in embedded computing: How fast can the CPU execute 

instructions? In this section, we consider three factors that can substantially influence program 

performance: pipelining and caching.  

 

1. Pipelining 

 

Modern CPUs are designed as pipelined machines in which several instructions are executed in parallel. 

Pipelining greatly increases the efficiency of the CPU. But like any pipeline, a CPU pipeline works best 

when its contents flow smoothly.Some sequences of instructions can disrupt the flow of information in the 

pipeline and, temporarily at least, slow down the operation of the CPU. 

 

The ARM7 has a three-stage pipeline: 

 

       Fetch the instruction is fetched from memory. 

 

       Decode the instruction’s opcode and operands are decoded to determine what function to perform. 

 

       Execute the decoded instruction is executed. 

 

Each of these operations requires one clock cycle for typical instructions. Thus, a normal instruction 

requires three clock cycles to completely execute, known as the latency of instruction execution. But since 

the pipeline has three stages, an instruction is completed in every clock cycle. In other words, the pipeline 

has a throughput of one instruction per cycle.illustrates the position of instructions in the pipeline during 

execution using the notation introduced by Hennessy and Patterson [Hen06]. A vertical slice through the 

timeline shows all instructions in the pipeline at that time. By following an instruction horizontally, we can 

see the progress of its execution. 

 

The C55x includes a seven-stage pipeline [Tex00B]: 

        Fetch. 

 

        Decode. 

 

        Address computes data and branch addresses. 

 

        Access 1 reads data. 

 

        Access 2 finishes data read. 

 

        Read stage puts operands onto internal busses. 

 

        Execute performs operations. 

 



RISC machines are designed to keep the pipeline busy. CISC machines may display a wide variation in 

instruction timing. Pipelined RISC machines typically have more regular timing characteristics most 

instructions that do not have pipeline hazards display the same latency. 

 
Caching 

 

However, the desired location is not always in the cache since it is considerably smaller than main memory. 

As a result, caches cause the time required to access memory to vary considerably. The extra time required 

to access a memory location not in the cache is often called the cache miss penalty.The amount of variation 

depends on several factors in the system architecture, but a cache miss is often several clock cycles slower 

than a cache hit. The time required to access a memory location depends on whether the requested location 

is in the cache. However, as we have seen, a location may not be in the cache for several reasons. 

       At a compulsory miss, the location has not been referenced before. 

       At a conflict miss, two particular memory locations are fighting for the same cache line. 

       At a capacity miss, the program’s working set is simply too large for the cache. 

The contents of the cache can change considerably over the course of execution of a program. When we 

have several programs running concurrently on the CPU, 

 

CPU POWER CONSUMPTION: 

 

Power consumption is, in some situations, as important as execution time. In this section we study the 

characteristics of CPUs that influence power consumption and mechanisms provided by CPUs to control 

how much power they consume. First, it is important to distinguish between energy and power. Power is, 

of course, energy consumption per unit time. Heat generation depends on power consumption. Battery life, 

on the other hand, most directly depends on energy consumption. Generally, we will use the term power as 

shorthand for energy and power consumption, distinguishing between them only when necessary. 

The high-level power consumption characteristics of CPUs and other system components are derived from 

the circuits used to build those components. Today, virtually all digital systems are built with 

complementary metal oxide semiconductor (CMOS) circuitry. The detailed circuit characteristics are best 

left to a study of VLSI design [Wol08], but the basic sources of CMOS power consumption are easily 

identified and briefly described below. 

 

Voltage drops: The dynamic power consumption of a CMOS circuit is proportional to the square of the 

power supply voltage (V2). Therefore, by reducing the power supply voltage to the lowest level that 

provides the required performance, we can significantly reduce power consumption. We also may be able 

to add parallel hardware and even further reduce the power supply voltage while maintaining required 

performance. 

 

Toggling: A CMOS circuit uses most of its power when it is changing its output value. This provides two 

ways to reduce power consumption. By reducing the speed at which the circuit operates, we can reduce its 

power consumption (although not the total energy required for the operation, since the result is available 

later).We can actually reduce energy consumption by eliminating unnecessary changes to the inputs of a 

CMOS circuit—eliminating unnecessary glitches at the circuit outputs eliminates unnecessary power 

consumption. 

 

 


